Skip to main content
Log in

Resistance to Soil-borne cereal mosaic virus in durum wheat is controlled by a major QTL on chromosome arm 2BS and minor loci

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Soil-borne cereal mosaic (SBCM) is a viral disease, which seriously affects hexaploid as well as tetraploid wheat crops in Europe. In durum wheat (Triticum durum Desf.), the elite germplasm is characterized by a wide range of responses to SBCMV, from susceptibility to almost complete resistance. In this study, the genetic analysis of SBCMV resistance was carried out using a population of 181 durum wheat recombinant inbred lines (RILs) obtained from Meridiano (resistant) × Claudio (moderately susceptible), which were profiled with SSR and DArT markers. The RILs were characterized for SBCMV response in the field under severe and uniform SBCMV infection during 2007 and 2008. A wide range of disease reactions (as estimated by symptom severity and DAS-ELISA) was observed. A large portion of the variability for SBCMV response was explained by a major QTL (QSbm.ubo-2BS) located in the distal telomeric region of chromosome 2BS near the marker triplet Xbarc35Xwmc661Xgwm210, with R 2 values ranging from 51.6 to 91.6%. The favorable allele was contributed by Meridiano. Several QTLs with minor effects on SBCMV response were also detected. Consistently with the observed transgressive segregation, the resistance alleles at minor QTLs were contributed by both parents. The presence and effects of QSbm.ubo-2BS were validated through association mapping in a panel of 111 elite durum wheat accessions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Barbosa MM, Goulart LR, Prestes AM, Juliatti FC (2001) Genetic control of resistance to soil-borne wheat mosaic virus in Brazilian cultivars of Triticum aestivum L. Thell. Euphytica 122:417–422

    Article  Google Scholar 

  • Bass C, Hendley R, Adams MJ, Hammond-Kosack KE, Kanyuka K (2006) The Sbm1 locus conferring resistance to soil-borne cereal mosaic virus maps to a gene-rich region on 5DL in wheat. Genome 49:1140–1148

    Article  PubMed  CAS  Google Scholar 

  • Bayles R, O’Sullivan D, Lea V, Freeman S, Budge G, Walsh K (2007) Controlling soil-borne cereal mosaic virus in the UK by developing resistant wheat cultivars. HGCA Project 2616. HGCA Crop Research News 32: Project Report no. 418

  • Bonnefoy M, Boursereau J, Chesneau R (1994) Comportment des variétés face aux virus de la mosaique du blé et de la mosaique jaune du blé. Proceedings, Workshop on Mosaics of cereals transmitted by Polymyxa graminis Led., Blois, France, 7–8 April 1994, 57–62

  • Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Ramdoss Y, Buckler ES (2007) TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics 23:2633–2635

    Article  PubMed  CAS  Google Scholar 

  • Breseghello F, Sorrells ME (2006) Association mapping of kernel size and milling quality in wheat (Triticum aestivum L.) cultivars. Genetics 172:1165–1177

    Article  PubMed  Google Scholar 

  • Budge GE, Loram J, Donovan G, Boonham N (2008a) RNA2 of Soil-borne cereal mosaic virus is detectable in plants of winter wheat grown from infected seeds. Eur J Plant Pathol 120:97–102

    Article  CAS  Google Scholar 

  • Budge GE, Ratti C, Rubies-Autonell C, Lockley D, Bonnefoy M, Vallega V, Pietravalle S, Henry CM (2008b) Response of UK winter wheat cultivars to Soil-borne cereal mosaic and Wheat spindle streak mosaic viruses across Europe. Eur J Plant Pathol 120:259–272

    Article  Google Scholar 

  • Canova A (1966) Ricerche sulle malattie da virus delle graminaceae. III Polymyxa graminis Led. vettore del mosaico del frumento. Phytopatol Medit 5:53–58

    Google Scholar 

  • Chao S, Zhang W, Dubcovsky J, Sorrells M (2007) Evaluation of genetic diversity and genome-wide linkage disequilibrium among US wheat (Triticum aestivum L.) germplasm representing different market classes. Crop Sci 47:1018–1030

    Article  CAS  Google Scholar 

  • Churchill GA, Doerge RW (1994) Empirical threshold values for quantitative trait mapping. Genetics 138:963–971

    PubMed  CAS  Google Scholar 

  • Clark MF, Adams AN (1977) Characteristics of the microplate method of enzyme-linked immunosorbent assay for detection of plant viruses. J Virol Meth 34:475–483

    CAS  Google Scholar 

  • Clover G, Wright D, Henry C (1999) Occurrence of Soil-borne wheat mosaic virus (SBWMV) in the United Kingdom. Proceedings, fourth symposium of the international working group on plant viruses with fungal vectors. Monterey, USA, 5–8 October 1999, 105–108

  • Comadran J, Thomas WT, van Eeuwijk FA, Ceccarelli S, Grando S, Stanca AM, Pecchioni N, Akar T, Al-Yassin A, Benbelkacem A, Ouabbou H, Bort J, Romagosa I, Hackett CA, Russell JR (2009) Patterns of genetic diversity and linkage disequilibrium in a highly structured Hordeum vulgare association-mapping population for the Mediterranean basin. Theor Appl Genet 119:175–187

    Article  PubMed  CAS  Google Scholar 

  • Conley EJ, Nduati V, Gonzalez-Hernandez JL, Mesfin A, Trudeau-Spanjers M, Chao S, Lazo GR, Hummel DD, Anderson OD, Qi LL, Gill BS, Echalier B, Linkiewicz AM, Dubcovsky J, Akhunov ED, Dyorak J, Peng JH, Lapitan NLV, Pathan MS, Nguyen HT, Ma XF, Miftahudin, Gustafson JP, Greene RA, Sorrells ME, Hossain G, Kalavacharla V, Kianian SF, Sidhu K, Dijbirligi M, Gill KS, Choi DW, Fenton RD, Close TJ, McGuire PE, Qualset CO, Anderson JA (2004) A 2600-locus chromosome bin map of wheat homoeologous group 2 reveals interstitial gene-rich islands and colinearity with rice. Genetics 168:625–637

    Article  PubMed  CAS  Google Scholar 

  • Desiderio E, Belocchi A, D’Egidio MG, Fornara M, Cecchi V, Cecchini C (2007) Semina 2007: quali varietà di frumento duro scegliere. L’Informatore Agrario 34:5–6

    Google Scholar 

  • Diao A, Chen J, Ye R, Zheng T, Yu S, Antoniw JF, Adams MJ (1999) Complete sequence and genome properties of Chinese wheat mosaic virus, a new furovirus from China. J Gen Virol 80:1141–1145

    PubMed  CAS  Google Scholar 

  • Dubey SN, Brown CM, Hooker AL (1970) Inheritance of field reaction to soil borne wheat mosaic virus. Crop Sci 10:93–95

    Article  Google Scholar 

  • Ersoz ES, Yu J, Buckler ES (2007) Applications of linkage disequilibrium and association mapping in crop plants. In: Varshney RK, Tuberosa R (eds) Genomics assisted crop improvement, vol 1: genomics approaches and platforms. Springer, Dordrecht, pp 97–119

    Chapter  Google Scholar 

  • Estes AP, Brakke MK (1966) Correlation of Polymyxa graminis with transmission of Soil-borne wheat mosaic virus. Virology 28:772–774

    Article  PubMed  CAS  Google Scholar 

  • Eujayl ME, Sorrells M, Baum P, Wolters W, Powell W (2002) Isolation of EST-derived microsatellite markers for genotyping the A and B genomes of wheat. Theor Appl Genet 10:399–407

    Article  Google Scholar 

  • Farnir F, Coppieters W, Arranz JJ, Berzi P, Cambisano N, Grisart B, Karim L, Marcq F, Moreau L, Mni M, Nezer C, Simon P, Vanmanshoven P, Wagenaar D, Georges M (2000) Extensive genome-wide linkage disequilibrium in cattle. Minimal linkage disequilibrium in human Xq25 and Xq28. Genome Res 10:220–227

    Article  PubMed  CAS  Google Scholar 

  • Giunta F, Motzo R, Pruneddu G (2007) Trends since 1900 in the yield potential of italian-bred durum cultivars. Eur J Agro 27:12–24

    Article  Google Scholar 

  • Gutiérrez AG, Carabalí SJ, Giraldo OX, Martínez CP, Correa F, Prado G, Joe Tohme J, Lorieux M (2010) Identification of a rice stripe necrosis virus resistance locus and yield component QTLs using Oryza sativa × O. glaberrima introgression lines. BMC Plant Biol 10:6. doi:10.1186/1471-2229-10-6

    Article  PubMed  Google Scholar 

  • Hall MD, Brown-Guedira G, Klatt A, Fritz AK (2009) Genetic analysis of resistance to soil-borne wheat mosaic virus derived from Aegilops tauschii. Euphitica 169:169–176

    Article  CAS  Google Scholar 

  • Heffner EL, Sorrels ME, Jannink JL (2009) Genomic selection for crop improvement. Crop Sci 49:1–12

    Article  CAS  Google Scholar 

  • Jesewska M (1994) Identification and some properties of wheat soil-borne mosaic virus isolated in Poland. Phytopathol Polon 8:97–102

    Google Scholar 

  • Kanyuka K, Ward E, Adams MJ (2003) Polymyxa graminis and the cereal viruses it transmits: a research challenge. Mol Plant Pathol 4:393–406

    Article  PubMed  CAS  Google Scholar 

  • Korzun V, Röder MS, Wendehake K, Pasqualone A, Lotti C, Ganal MW, Blanco A (1999) Integration of dinucleotide microsatellites from hexaploid bread wheat into a genetic linkage map of durum wheat. Theor Appl Genet 98:1202–1207

    Article  CAS  Google Scholar 

  • Kucharek TA, Walker JH (1974) The presence of and damage caused by Soil-borne wheat mosaic virus in Florida. Plant Dis Report 58:763–765

    Google Scholar 

  • Kühne T (2009) Soil-borne viruses affecting cereals—known for long but still a threat. Virus Res 141:174–183

    Article  PubMed  Google Scholar 

  • Maccaferri M, Sanguineti MC, Donini P, Tuberosa R (2003) Microsatellite analysis reveals a progressive widening of the genetic basis in the elite durum wheat germplasm. Theor Appl Genet 107:783–797

    Article  PubMed  CAS  Google Scholar 

  • Maccaferri M, Sanguineti MC, Tuberosa R (2005) Analysis of linkage disequilibrium in a collection of elite durum wheat genotypes. Mol Breeding 15:271–289

    Article  CAS  Google Scholar 

  • Maccaferri M, Sanguineti MC, Natoli V, Araus Ortega JL, Ben Salem M, Bort J, Chenenaoui C, De Ambrogio E, Garcia del Moral L, Demontis A, El-Ahmed A, Maalouf F, Machlab H, Moragues M, Motawaj J, Nachit M, Nserallah N, Ouabbou H, Royo C, Tuberosa R (2006) A panel of elite accessions of durum wheat (Triticum durum Desf.) suitable for association mapping studies. Plant Genet Resour 4:79–85

    Article  CAS  Google Scholar 

  • Maccaferri M, Stefanelli S, Rotondo F, Tuberosa R, Sanguineti MC (2007) Relationships among durum wheat accessions. I. Comparative analysis of SSR, AFLP, and phenotypic data. Genome 50:373–384

    Article  PubMed  CAS  Google Scholar 

  • Maccaferri M, Mantovani P, Tuberosa R, DeAmbrogio E, Giuliani S, Demontis A, Massi A, Sanguineti MC (2008a) A major QTL for durable leaf rust resistance widely exploited in durum wheat breeding programs maps on the distal region of chromosome arm 7BL. Theor Appl Genet 117:1225–1240

    Article  PubMed  CAS  Google Scholar 

  • Maccaferri M, Sanguineti MC, Corneti S, Araus Ortega JL, Ben Salern M, Bort J, DeAmbrogio E, Garcia del Moral L, Demontis A, El-Ahmed A, Maalouf F, Machlab H, Martos V, Moragues M, Motawaj J, Nachit M, Nserallah N, Ouabbou H, Royo C, Slama A, Tuberosa R (2008b) Quantitative trait loci for grain yield and adaptation of durum wheat (Triticum durum Desf.) across a wide range of water availability. Genetics 178:489–511

    Article  PubMed  Google Scholar 

  • Maccaferri M, Ratti C, Rubies-Autonell C, Tuberosa R, Demontis A, Massi A, Stefanelli S, Vallega V, Sanguineti MC (2008c) Mapping genetic factors for resistance to Soil-Borne cereal mosaic virus (SBCMV) in durum wheat. 11th international wheat genetics symposium. Brisbane, Australia. 24–29 August, 2008

  • Mantovani P, Maccaferri M, Sanguineti MC, Tuberosa R, Catizone I, Wenzl P, Thomson B, Carling J, Kilian A (2008) An integated DArT-SSR linkage map of durum wheat. Mol Breeding 22:629–648

    Article  CAS  Google Scholar 

  • Marti J, Bort J, Slafer GA, Araus JL (2007) Can wheat yield be assessed by early measurements of normalized difference vegetation index? Ann Appl Biol 150:253–257

    Article  Google Scholar 

  • McKinney HH (1923) Investigations of the rosette disease of wheat and its control. J Agric Res 23:771–800

    Google Scholar 

  • Merkle OG, Smith EL (1983) Inheritance of resistance to soil-borne mosaic in wheat. Crop Sci 23:1075–1076

    Article  Google Scholar 

  • Modawi RS, Heyne EG, Brunetta D, Willis WG (1982) Genetic studies of field reaction to wheat soil-borne mosaic virus. Plant Dis 66:1183–1184

    Article  Google Scholar 

  • Nakagawa M, Soga Y, Watanabe S, Gocho H, Nishio K (1959) Genetical studies on the wheat mosaic virus II. Genes affecting the inheritance of susceptibility to strains of yellow mosaic virus in varietal crosses of wheat. Jpn J Breed 9:118–120

    Google Scholar 

  • Narasimhamoorthy B, Gill BS, Fritz AK, Nelson JC, Brown-Guedira GL (2006) Advanced backcross QTL analysis of a hard winter wheat × synthetic wheat population. Theor Appl Genet 112:787–796

    Article  PubMed  CAS  Google Scholar 

  • Perovic D, Forster J, Devaux P, Hariri D, Guilleroux M, Kanyuka K, Lyons R, Weyen J, Feuerhelm D, Kastirr U, Sourdille P, Röder M, Ordon F (2009) Mapping and diagnostic marker development for Soil-borne cereal mosaic virus resistance in bread wheat. Mol Breed 23:641–653

    Article  CAS  Google Scholar 

  • Ratti C, Pisi A, Vallega V, Rubies Autonell C (2005) Molecular characterization of Italian Soil-borne cereal mosaic virus isolates. Parasitica 61:11–16

    Google Scholar 

  • Ratti C, Rubies-Autonell C, Maccaferri M, Stefanelli S, Sanguineti MC, Vallega V (2006) Reaction of 111 cultivars of Triticum durum Desf. from some of the world’s main genetic pools to soil-borne cereal mosaic virus. J Plant Dis Protect 113:145–149

    Google Scholar 

  • Röder MS, Korzun V, Wendehake K, Plaschke J, Tixier MH, Leroy P, Ganal MW (1998) A microsatellite map of wheat. Genetics 149:2007–2023

    PubMed  Google Scholar 

  • Rohlf FJ (1997) NTSYS-pc: Numerical Taxonomy and Multivariate Analysis System Version 2.1. Exeter Software, Setauket, New York

    Google Scholar 

  • Rubies-Autonell C, Vallega V (1987) Observations on a mixed Soil-borne wheat mosaic virus and Wheat spindle streak mosaic virus infection in durum wheat (Triticum durum Desf.). J Phytopathol 119:111–121

    Article  Google Scholar 

  • Rubies-Autonell C Vallega V (199l) Studies on the development and interaction of Soil-borne wheat mosaic virus and Wheat Spindle streak mosaic virus. In Biotic interactions and soil-borne diseases, Proc. First Congress of the European Foundation of Plant Pathology, Wageningen, Netherlands (Eds. ABR Beemster, GJ Bollen, M Gerlach, MA Ruissen, B.). Schippers and A. Tempel. Elsevier Scientific Publishers, Amsterdam, pp 107–112

  • Rubies-Autonell C, Vallega V, Ratti C (2003) Reactions of cultivars of common wheat (Triticum aestivum L.) to soilborne wheat mosaic virus in northern Italy during 1996–1997. J Plant Dis Protect 110:332–336

    Google Scholar 

  • Rubies-Autonell C, Ratti C, Vallega V (2009) Indexed data for comparing the reaction to cereal soil-borne mosaic virus of durum wheat cultivars assayed in different seasons. In: Rush CM (ed) Proc. of the seventh symposium of the international working group on plant viruses with fungal vectors (IWGPVFV). Quedlingburg, Germany

    Google Scholar 

  • Shaalan M, Heyne EG, Sill WH (1966) Breeding wheat for resistance to soil borne wheat mosaic virus, wheat streak-mosaic virus, leaf rust, stem rust, and bunt. Phytopathology 56:664–669

    Google Scholar 

  • Shirako Y, Suzuki N, French RC (2000) Similarity and divergence among viruses in the genus Furovirus. Virology 270:201–208

    Article  PubMed  CAS  Google Scholar 

  • Somers DJ, Isaac P, Edwards K (2004) A high-density microsatellite consensus map for breeding wheat (Triticum aestivum L.). Theor Appl Genet 109:1105–1114

    Article  PubMed  CAS  Google Scholar 

  • Song QJ, Shi JR, Singh S, Fickus EW, Costa JM, Lewis J, Gill BS, Ward R, Cregan PB (2005) Development and mapping of microsatellite (SSR) markers in wheat. Theor Appl Genet 110:550–560

    Article  PubMed  CAS  Google Scholar 

  • Torrance L, Koenig R (2005) Genus Furovirus. In: Fauquet CM, Mayo MA, Maniloff J, Desselberger U, Ball LA (eds) Virus taxonomy: Eighth Report of the International Committee on Taxonomy of Viruses. Elsevier Academic Press, London, pp 1027–1032

    Google Scholar 

  • Vaïanopoulos C, Legrève A, Moreau V, Bragard C (2009) Broad-spectrum detection and quantitation methods of Soil-borne cereal mosaic virus isolates. J Virol Methods 159(2):227–232

    Article  PubMed  Google Scholar 

  • Vallega V (2004) Soil-borne cereal mosaic. In: Lapierre H, Signoret PA (eds) Viruses, virus diseases of Poaceae (Gramineae). INRA, Paris, pp 612–613

    Google Scholar 

  • Vallega V, Rubies Autonell C (1985) Reactions of Italian Triticum durum cultivars to soilborne wheat mosaic. Plant Dis 69:64–66

    Article  Google Scholar 

  • Vallega V, Rubies-Autonell C, Turina M, Ratti C, Contoli S (1999) Reactions to SBWMV of durum wheat cultivars grown in northern Italy during 1995–96. J Plant Dis Protect 106:284–290

    Google Scholar 

  • Vallega V, Rubies-Autonell C, Ratti C (2006) Resistance to accumulation of Soil-borne cereal mosaic virus in eight cultivars of Triticum durum Desf. Parasitica 62:79–96

    Google Scholar 

  • Van Ooijen JW (2006) JoinMap® 4, Software for the calculation of genetic linkage maps in experimental populations. Kyazma BV, Wageningen

    Google Scholar 

  • Varshney RK, Tuberosa R (2007) Genomics-assisted crop improvement: an overview. In: Varshney RK, Tuberosa R (eds) Genomics assisted crop improvement, vol. 1: genomics approaches and platforms. Springer, Dordrecht, pp 1–12

    Chapter  Google Scholar 

  • Walker SL, Leath S, Murphy JP, Lommel SA (1998) Selection for resistance and tolerance to oat mosaic virus and oat golden stripe virus in hexaploid oats. Plant Dis 82:423–427

    Article  Google Scholar 

  • Weir BS (1996) Genetic data analysis II. Sinauer Associates, Sunderland

    Google Scholar 

  • Zadoks JC, Chang TT, Konzak CF (1974) A decimal code for the growth stages of cereals. Weed Res 14:415–421

    Article  Google Scholar 

Download references

Acknowledgments

The research was supported by the Emilia-Romagna Region, the CARISBO Bank Foundation (Genomica Grano Duro Project) and by the Italian Minister for Education, University and Research (MIUR), FISR Project “Sistemi, metodologie e strategie per la caratterizzazione e valorizzazione della granella e degli alimenti derivati del frumento duro in ambienti marginali e/o vocazionali”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Corinna Sanguineti.

Additional information

Communicated by F. Ordon.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maccaferri, M., Ratti, C., Rubies-Autonell, C. et al. Resistance to Soil-borne cereal mosaic virus in durum wheat is controlled by a major QTL on chromosome arm 2BS and minor loci. Theor Appl Genet 123, 527–544 (2011). https://doi.org/10.1007/s00122-011-1605-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-011-1605-9

Keywords

Navigation