Skip to main content
Log in

Evaluation of QTL alleles from exotic sources for hybrid seed yield in the original and different genetic backgrounds of spring-type Brassica napus L.

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

Previously identified alleles at quantitative trait loci (QTL) for hybrid seed yield were re-evaluated in the same genetic background (in hybrid combination with the same tester) as the original QTL mapping study and also evaluated in a different genetic background (in hybrid combination with two different testers). The QTL were identified from wide crosses of exotic germplasm sources with spring-type Brassica napus L., in which alleles from the exotic germplasm sources increased hybrid seed yield. Results from the re-evaluation of six QTL, in the same genetic background and hybrid combination, indicate that several of the exotic donor QTL alleles did increase hybrid seed yield and could be successfully used for improving the original single-cross hybrid. However, results from the evaluation of seven QTL (including the same six previous QTL) in a new genetic background, in combination with two new testers, indicate that the exotic QTL alleles were often no different or produced significantly lower hybrid seed yield than the spring QTL alleles. In all studies, the QTL were also very sensitive to environmental interactions. Thus, our results indicate that although these exotic sources contain favorable QTL alleles when introgressed into one spring hybrid background, the effects are not predictive of other genetic backgrounds or hybrid combinations. Although QTL affecting hybrid seed yield have been identified, comparisons of multiple QTL alleles are needed to determine the most favorable allele at each locus. Characterization of QTL complementation across testers will be required to predict their effects in multiple hybrid combinations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

CI:

Confidence interval

CMS:

Cytoplasmic male sterility

DH:

Double haploid

IBL:

Inbred backcross line

LOD:

Logarithm of odds

MAS:

Marker-assisted selection

QTL:

Quantitative trait loci

RCBD:

Randomized complete block design

RFLP:

Restriction fragment length polymorphism

SI:

Self incompatibility

STS:

Sequence-tagged sites

SSR:

Simple sequence repeats

SSCP:

Single-strand conformation polymorphism

References

  • Bartkowiak-Broda I, Rousselle P, Renard M (1979) Investigations of two kinds of cytoplasmic male-sterility in rapeseed (Brassica napus L.). Genetica Pol 20:487–497

    Google Scholar 

  • Beavis WD (1994) The power and deceit of QTL experiments: lessons from comparative QTL studies. In: Wilkinson DB (ed) Proceedings of the 49th Annual Corn and Sorghum Industry Research Conference, Dec 7–8, Chicago (IL). American Seed Trade Association, Washington (DC), pp 250–266

  • Bouchez A, Hospital F, Causse M, Gallais A, Charcosset A (2002) Marker-assisted introgression of favorable alleles at quantitative trait loci between maize elite lines. Genetics 162:1945–1959

    PubMed  CAS  Google Scholar 

  • Brandle JE, McVetty PBE (1990) Geographical diversity, parental selection and heterosis in oilseed rape. Can J Plant Sci 70:935–940

    Google Scholar 

  • Butruille DV (1998) Introgression of winter germplasm and use of molecular markers to document its effects on agronomic traits of spring inbreds and hybrids of Brassica napus (Ph.D. dissertation). Madison (WI): University of Wisconsin, Madison, 195 pp

  • Butruille DV, Guries RP, Osborn TC (1999a) Increasing yield of spring oilseed rape hybrids through introgression of winter germplasm. Crop Sci 39:1491–1496

    Google Scholar 

  • Butruille DV, Guries RP, Osborn TC (1999b) Linkage analysis of molecular markers and quantitative trait loci in populations of inbred backcross lines of Brassica napus L. Genetics 153:949–964

    PubMed  CAS  Google Scholar 

  • Buzza GC (1995) Plant breeding. In: Kimber DS, McGregor DI (eds) Brassica oilseeds: production and utilization. CAB International, Wallingford, pp 153–175

    Google Scholar 

  • Campbell BT, Baenziger PS, Eskridge KM, Budak H, Streck NA, Weiss A, Gill KS, Erayman M (2004) Using environmental covariates to explain genotype × environment and QTL × environment interactions for agronomic traits on chromosome 3A of wheat. Crop Sci 44:620–627

    Google Scholar 

  • Concibido VC, La Vallee B, Mclaird P, Pineda N, Meyer J, Hummel L, Yang J, Wu K, Delannay X (2003) Introgression of a quantitative trait locus for yield from Glycine soja into commercial soybean cultivars. Theor Appl Genet 106:575–582

    PubMed  CAS  Google Scholar 

  • Crossa J, Vargas M, van Eeuwijk FA, Jiang C, Edmeades GO, Hoisington D (1999) Interpreting genotype × environment interaction in tropical maize using linked molecular markers and environmental covariables. Theor Appl Genet 99:611–625. doi:10.1007/s001220051276

    Article  Google Scholar 

  • Diers BW, Osborn TC (1994) Genetic diversity of oilseed Brassica napus germplasm based on restriction fragment length polymorphisms. Theor Appl Genet 88:662–668. doi:10.1007/BF01253968

    Article  Google Scholar 

  • Ferreira ME, Williams PH, Osborn TC (1994) RFLP mapping of Brassica napus using doubled haploid lines. Theor Appl Genet 89:615–621. doi:10.1007/BF00222456

    Article  CAS  Google Scholar 

  • Grant I, Beversdorf WD (1985) Heterosis and combining ability estimates in spring-planted oilseed rape (Brassica napus L.). Can J Genet Cytol 27:472–478

    Google Scholar 

  • Hospital F, Charcosset A (1997) Marker-assisted introgression of quantitative trait loci. Genetics 147:1469–1485

    PubMed  CAS  Google Scholar 

  • Kandemir N, Jones BL, Wesenberg DM, Ullrich SE, Kleinhofs A (2000) Marker-assisted analysis of three grain yield QTL in barley (Hordeum vulgare L.) using near isogenic lines. Mol Breed 6:157–167. doi:10.1023/A:1009602514106

    Article  CAS  Google Scholar 

  • Kidwell KK, Osborn TC (1992) Simple plant DNA isolation procedures. In: Beckman J, Osborn TC (eds) Plant genomes: methods for genetic and physical mapping. Kluwer, Dordrecht, pp 1–13

    Google Scholar 

  • Lande R, Thompson R (1990) Efficiency of marker-assisted selection in the improvement of quantitative traits. Genetics 124:743–756

    PubMed  CAS  Google Scholar 

  • Lefort-Buson M, Guillot-Lemoine B, Dattee Y (1987) Heterosis and genetic distance in rapeseed (Brassica napus L.): crosses between European and Asiatic selfed lines. Genome 29:413–418

    Google Scholar 

  • Li Z, Pinson SRM, Park WD, Paterson AH, Stansel JW (1997) Epistasis for three grain yield components in rice (Oryza sativa L.). Genetics 145:453–465

    PubMed  CAS  Google Scholar 

  • Lübberstedt T, Melchinger AE, Schön CC, Utz HF, Klein D (1997) QTL mapping in testcrosses of European flint lines of maize: I. Comparison of different testers for forage yield traits. Crop Sci 37:921–931

    Google Scholar 

  • Lukens LN, Pires JC, Leon E, Vogelzang R, Oslach L, Osborn T (2006) Patterns of sequence loss and cytosine methylation within a population of newly resynthesized Brassica napus allopolyploids. Plant Physiol 140:336–348. doi:10.1104/pp.105.066308

    Article  PubMed  CAS  Google Scholar 

  • Melchinger AE, Utz HF, Schon CC (1998) Quantitative trait locus (QTL) mapping using different testers and independent population samples in maize reveals low power of QTL detection and large bias in estimates of QTL effects. Genetics 149:383–403

    PubMed  CAS  Google Scholar 

  • Michaels SD, Amasino RM (2001) High throughput isolation of DNA and RNA in 96-well format using a paint shaker. Plant Mol Biol Rep 19:227–233. doi:10.1007/BF02772894

    Article  CAS  Google Scholar 

  • Muangprom A, Thomas SG, Sun T, Osborn TC (2005) A novel dwarfing mutation in a green revolution gene from Brassica rapa. Plant Physiol 137:931–938. doi:10.1104/pp.104.057646

    Article  PubMed  CAS  Google Scholar 

  • Paterson AH, Damon S, Hewitt JD, Zamir D, Rabinowitch HD, Lincoln SE, Lander ES, Tanksley SD (1991) Mendelian factors underlying quantitative traits in tomato: comparison across species, generations, and environments. Genetics 127:181–197

    PubMed  CAS  Google Scholar 

  • Quijada PA (2003) Introgression of germplasm from winter into spring Brassica napus: detection and confirmation of quantitative trait loci (Ph.D. dissertation). Madison (WI): University of Wisconsin, Madison, 222 pp

  • Quijada PA, Maureira IJ, Osborn TC (2004a) Confirmation of QTL controlling seed yield in spring canola (Brassica napus L.) hybrids. Mol Breed 13:193–200. doi:10.1023/B:MOLB.0000018774.72965.2a

    Article  CAS  Google Scholar 

  • Quijada PA, Udall JA, Polewicz H, Vogelzang RD, Osborn TC (2004b) Phenotypic effects of introgressing French winter germplasm into hybrid spring canola. Crop Sci 44:1982–1989

    Article  Google Scholar 

  • Quijada PA, Udall JA, Lambert B, Osborn TC (2006) Quantitative trait analysis of seed yield and other complex traits in hybrid spring rapeseed (Brassica napus L): 1. Identification of genomic regions from winter germplasm. Theor Appl Genet 113:549–561. doi:10.1007/s00122-006-0323-1

    Article  PubMed  CAS  Google Scholar 

  • Reyna N, Sneller CH (2001) Evaluation of marker-assisted introgression of yield QTL alleles into adapted soybean. Crop Sci 41:1317–1321

    Article  Google Scholar 

  • Ribaut J-M, Ragot M (2007) Marker-assisted selection to improve drought adaptation in maize: the backcross approach, perspectives, limitations, and alternatives. J Exp Bot 58:351–360. doi:10.1093/jxb/erl214

    Article  PubMed  CAS  Google Scholar 

  • SAS Institute Inc (2004) SAS OnlineDoc® 9.1.3. SAS Institute Inc, Cary

    Google Scholar 

  • Sernyk JL, Stefansson BR (1983) Heterosis in summer rape (Brassica napus L.). Can J Plant Sci 63:407–413

    Article  Google Scholar 

  • Slafer GA (2003) Genetic basis of yield as viewed from a crop physiologist’s perspective. Ann Appl Biol 142:117–128. doi:10.1111/j.1744-7348.2003.tb00237.x

    Article  Google Scholar 

  • Stuber CW (1994) Successes in the use of molecular markers for yield enhancement in corn. In: Wilkinson DB (ed) Proceedings of the 49th Annual Corn and Sorghum Industry Research Conference, Dec 7–8, Chicago (IL). American Seed Trade Association, Washington (DC), pp 232–238

  • Stuber CW, Polacco M, Senior ML (1999) Synergy of empirical breeding, marker-assisted selection, and genomics to increase crop yield potential. Crop Sci 39:1571–1583

    Article  Google Scholar 

  • Thurling N (1993) Physiological constraints and their genetic manipulation. In: Labana KS, Banga SS, Banga SK (eds) Breeding oilseed brassicas. Springer-Verlag, New York, pp 44–66

    Google Scholar 

  • Udall JA (2003) A genetic study of oilseed Brassica napus: mapping chromosome rearrangements and quantitative trait loci (Ph.D. dissertation). Madison (WI): University of Wisconsin, Madison, 240 pp

  • Udall JA, Quijada PA, Polewicz H, Vogelzang R, Osborn TC (2004) Phenotypic effects of introgressing Chinese winter and resynthesized Brassica napus L. germplasm into hybrid spring canola. Crop Sci 44:1990–1996

    Article  Google Scholar 

  • Udall JA, Quijada PA, Lambert B, Osborn TC (2006) Quantitative trait analysis of seed yield and other complex traits in hybrid spring rapeseed (Brassica napus L.): 2. Identification of alleles from unadapted germplasm. Theor Appl Genet 113:597–609. doi:10.1007/s00122-006-0324-0

    Article  PubMed  CAS  Google Scholar 

  • Utz HF, Melchinger AE, Schon CC (2000) Bias and sampling error of the estimated proportion of genotypic variance explained by quantitative trait loci determined from experimental data in maize using cross validation and validation with independent samples. Genetics 154:1839–1849

    PubMed  Google Scholar 

  • Voorrips RE (2002) MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered 93:77–78. doi:10.1093/jhered/93.1.77

    Article  PubMed  CAS  Google Scholar 

  • Yan W, Hunt LA (1998) Genotype by environment interaction and crop yield. Plant Breed Rev 16:135–178

    Google Scholar 

  • Zhu H, Briceño G, Dovel R, Hayes PM, Liu BH, Liu CT, Ullrich SE (1999) Molecular breeding for grain yield in barley: an evaluation of QTL effects in a spring barley cross. Theor Appl Genet 98:772–779. doi:10.1007/s001220051134

    Article  Google Scholar 

Download references

Acknowledgments

We thank Robert Gaeta, Federico Iniguez-Luy, Ivan Maureira, Joy Muangprom, Chris Pires, Tim Pruski, Pablo Quijada, Dena Tellefsen, Josh Udall, Robert Vogelzang, and Jianwei Zhao for technical assistance and discussion. Funding to TCO was provided by the USDA North Central Canola Research Program. CCK was supported in part by the Gabelman-Shippo Distinguished Graduate Fellowship in Plant Breeding & Plant Genetics and the Pioneer Plant Breeding Graduate Fellowship, University of Wisconsin, Madison.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chad C. Kramer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kramer, C.C., Polewicz, H. & Osborn, T.C. Evaluation of QTL alleles from exotic sources for hybrid seed yield in the original and different genetic backgrounds of spring-type Brassica napus L.. Mol Breeding 24, 419–431 (2009). https://doi.org/10.1007/s11032-009-9303-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11032-009-9303-x

Keywords

Navigation