Skip to main content
Log in

Hybrid seed set in wheat is a complex trait but can be improved indirectly by selection for male floral traits

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Efficient hybrid wheat breeding requires the redesign of the wheat floral architecure to enhance cross-pollination. Several studies evaluated the phenotypic variation and the genetic architecture of male floral traits, but their contribution to the most important trait, hybrid seed set on the female parent, has not yet been considered. To bridge this gap, we employed 31 male lines and evaluated the hybrid seed set on two female tester lines in crossing blocks. Hybrid seed set showed large genetic variance and high heritability, which demonstrates the potential for the improvement of this trait. However, the assessment of hybrid seed set is difficult as secondary traits like plant height and especially flowering time, as well as the environment largely influence the hybrid seed set. Nevertheless, a moderately high correlation between visual anther extrusion and hybrid seed set opens up the possibility to use visual anther extrusion as an indirect trait for preliminary male screenings. Further research evaluating traits influencing female receptivity coupled with genomics-assisted approaches are highly recommended to develop an improved selection portfolio for maximizing hybrid seed set.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Beri SM, Anand SC (1971) Factors affecting pollen shedding capacity in wheat. Euphytica 20:327–332

    Article  Google Scholar 

  • Boeven PHG, Longin CFH, Leiser WL, Kollers S, Ebmeyer E, Würschum T (2016a) Genetic architecture of male floral traits required for hybrid wheat breeding. Theor Appl Genet 129:2343–2357

    Article  PubMed  Google Scholar 

  • Boeven PHG, Longin CFH, Würschum T (2016b) A unified framework for hybrid breeding and the establishment of heterotic groups in wheat. Theor Appl Genet 129:1231–1245

    Article  PubMed  Google Scholar 

  • Brien C (2016) asremlPlus: augments the use of ‘ASReml-R’ in fitting mixed models. https://CRAN.R-project.org/package=asremlPlus. Accessed 21 Nov 2017

  • Butler DG, Cullis BR, Gilmour AR, Gogel BJ (2009) Mixed models for S language environments. ASReml-R reference manual: Release 3.0. Technical report. ASReml estimates variance components under a general linear mixed model by residual maximum likelihood (REML). https://www.vsni.co.uk/software/asreml. Accessed 10 Sept 2017

  • De Vries AP (1971) Flowering biology of wheat, particularly in view of hybrid seed production—a review. Euphytica 20:152–170

    Article  Google Scholar 

  • D’Souza L (1970) Untersuchungen über die Eignung des Weizens als Pollenspender bei der Fremdbefruchtung, verglichen mit Roggen, Triticale und Secalutricum. Z Pflanzenzucht 63:246–269 (in German)

    Google Scholar 

  • Ellis MH, Spielmeyer W, Gale KR, Rebetzke GJ, Richards RA (2002) “Perfect” markers for the Rht-B1b and Rht-D1b dwarfing genes in wheat. Theor Appl Genet 105:1038–1042

    Article  PubMed  CAS  Google Scholar 

  • Epskamp S, Cramer A, Waldorp LJ, Schmittmann VD, Borsboom D (2012) Qgraph: network visualizations of relationships in psychometric data. J Stat Softw 48:1–18

    Article  Google Scholar 

  • Geyer M, Bund A, Albrecht T, Hartl L, Mohler V (2016) Distribution of the fertility-restoring gene Rf3 in common and spelt wheat determined by an informative SNP marker. Mol Breed 36:167

    Article  CAS  Google Scholar 

  • Gillberg J, Marttinen P, Mamitsuka H, Kaski S (2017) Modelling G × E with historical weather information improves genomic prediction in new environments. bioRxiv. https://doi.org/10.1101/213231

    Article  Google Scholar 

  • Gower JC (1966) Some distance properties of latent root and vector methods used in multivariate analysis. Biometrika 53:325–338

    Article  Google Scholar 

  • Kassambara A, Mundt F (2017) factoextra: extract and visualize the results of multivariate data analyses. https://CRAN.R-project.org/package=factoextra. Accesssed 8 Jan 2018

  • Kempe K, Boudichevskaia A, Jerchel R, Pescianschi D, Schmidt R, Kirchhoff M, Schachschneider R, Gils M (2013) Quantitative assessment of wheat pollen shed by digital image analysis of trapped airborne pollen grains. Adv Crop Sci Technol 1:119

    Google Scholar 

  • Langer SM, Longin CFH, Würschum T (2014) Phenotypic evaluation of floral and flowering traits with relevance for hybrid breeding in wheat (Triticum aestivum L.). Plant Breed 133:433–441

    Article  Google Scholar 

  • Lelley J (1966) Befruchtungsbiologische Beobachtungen im Zusammenhang mit der Saatguterzeugung von Hybridweizen. Der Züchter 36:314–317

    Google Scholar 

  • Longin CFH, Reif JC (2014) Redesigning the exploitation of wheat genetic resources. Trends Plant Sci 19:631–636

    Article  PubMed  CAS  Google Scholar 

  • Longin CFH, Mühleisen J, Maurer HP, Zhang H, Gowda M, Reif JC (2012) Hybrid breeding in autogamous cereals. Theor Appl Genet 125:1087–1096

    Article  PubMed  Google Scholar 

  • Maurer HP, Melchinger AE, Frisch M (2008) Population genetic simulation and data analysis with Plabsoft. Euphytica 161:133–139

    Article  Google Scholar 

  • Miedaner T (2017) Grundlagen der Pflanzenzüchtung (in German), 2nd edn. DLG-Verlag, Frankfurt

    Google Scholar 

  • Mühleisen J, Piepho H-P, Maurer HP, Longin CFH, Reif JC (2014) Yield stability of hybrids versus lines in wheat, barley, and triticale. Theor Appl Genet 127:309–316

    Article  PubMed  Google Scholar 

  • Muqaddasi QH, Lohwasser U, Nagel M, Börner A, Pillen K, Röder MS (2016) Genome-wide association mapping of anther extrusion in hexaploid spring wheat. PLoS ONE 11:e0155494

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Muqaddasi QH, Brassac J, Börner A, Pillen K, Röder MS (2017a) Genetic architecture of anther extrusion in spring and winter wheat. Front Plant Sci 8:754. https://doi.org/10.3389/fpls.2017.00754

    Article  PubMed  PubMed Central  Google Scholar 

  • Muqaddasi QH, Pillen K, Plieske J, Ganal MW, Röder MS (2017b) Genetic and physical mapping of anther extrusion in elite European winter wheat. PLoS ONE 12:e0187744

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Muqaddasi QH, Reif JC, Li Z, Basnet BR, Dreisigacker S, Röder MS (2017c) Genome-wide association mapping and genome-wide prediction of anther extrusion in CIMMYT spring wheat. Euphytica 213:73

    Article  CAS  Google Scholar 

  • Paradis E, Claude J, Strimmer K (2004) APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20:289–290

    Article  PubMed  CAS  Google Scholar 

  • Patterson HD (1997) Analysis of series of variety trials. In: Kempton RA, Fox PN, Cerezo M (eds) Statistical methods for plant variety evaluation, 1st edn. Chapman and Hall, London, pp 139–161

    Chapter  Google Scholar 

  • Pickett AA (1993) Hybrid wheat: results and problems. Advances in plant breeding Fortschritte der Pflanzenzüchtung, vol 15. Paul Parey Scientific Publishers, Berlin

    Google Scholar 

  • Piepho H-P, Möhring J (2007) Computing heritability and selection response from unbalanced plant breeding trials. Genetics 177:1881–1888

    Article  PubMed  PubMed Central  Google Scholar 

  • R Core Team (2015) R: a language and environment for statistical computing. http://www.R-project.org/. Accessed 10 Sept 2017

  • Spindel JE, McCouch S (2016) When more is better: how data sharing would accelerate genomic selection of crop plants. New Phytol 212:814–826

    Article  PubMed  Google Scholar 

  • Stram DO, Lee JW (1994) Variance components testing in the longitudinal mixed effects model. Biometrics 50:1171–1177

    Article  PubMed  CAS  Google Scholar 

  • Tester M, Langridge P (2010) Breeding technologies to increase crop production in a changing world. Science 327:818–822

    Article  PubMed  CAS  Google Scholar 

  • Wang S, Wong D, Forrest K, Allen A, Chao S, Huang BE, MacCaferri M, Salvi S, Milner SG, Cattivelli L, Mastrangelo AM, Whan A, Stephen S, Barker G, Wieseke R, Plieske J, Lillemo M, Mather D, Appels R, Dolferus R, Brown-Guedira G, Korol A, Akhunova AR, Feuillet C, Salse J, Morgante M, Pozniak C, Luo M-C, Dvorak J, Morell M, Dubcovsky J, Ganal M, Tuberosa R, Lawley C, Mikoulitch I, Cavanagh C, Edwards KJ, Hayden M, Akhunov E (2014) Characterization of polyploid wheat genomic diversity using a high-density 90,000 single nucleotide polymorphism array. Plant Biotechnol J 12:787–796

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Whitford R, Fleury D, Reif JC, Garcia M, Okada T, Korzun V, Langridge P (2013) Hybrid breeding in wheat: technologies to improve hybrid wheat seed production. J Exp Bot 64:5411–5428

    Article  PubMed  CAS  Google Scholar 

  • Wilhelm EP, Mackay IJ, Saville RJ, Korolev AV, Balfourier F, Greenl AJ, Boulton MI, Powell W (2013) Haplotype dictionary for the Rht-1 loci in wheat. Theor Appl Genet 126:1733–1747

    Article  PubMed  CAS  Google Scholar 

  • Williams E, Piepho H-P, Whitaker D (2011) Augmented p-rep designs. Biom J 53:19–27

    Article  PubMed  Google Scholar 

  • Wright S (1978) Evolution and genetics of populations, variability within and among natural populations, vol 4. The University of Chicago Press, Chicago, p 91

    Google Scholar 

  • Würschum T, Langer SM, Longin C, Tucker MR, Leiser WL (2017a) A modern green revolution gene for reduced height in wheat. Plant J 92:892–903. https://doi.org/10.1111/tpj.13726

    Article  PubMed  CAS  Google Scholar 

  • Würschum T, Leiser WL, Weissmann S, Maurer HP (2017b) Genetic architecture of male fertility restoration of Triticum timopheevii cytoplasm and fine-mapping of the major restorer locus Rf3 on chromosome 1B. Theor Appl Genet 130:1253–1266

    Article  PubMed  CAS  Google Scholar 

  • Würschum T, Langer SM, Longin CFH, Tucker MR, Leiser WL (2018a) A three-component system incorporating Ppd-D1, copy number variation at Ppd-B1, and numerous small-effect quantitative trait loci facilitates adaptation of heading time in winter wheat cultivars of worldwide origin. Plant Cell Environ. https://doi.org/10.1111/pce.13167

    Article  PubMed  Google Scholar 

  • Würschum T, Liu G, Boeven PHG, Longin CFH, Mirdita V, Kazman E, Zhao Y, Reif JC (2018b) Exploiting the Rht portfolio for hybrid wheat breeding. Theor Appl Genet. https://doi.org/10.1007/s00122-018-3088-4

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Sabit Rrecaj and Sebastian Hajek for their outstanding work in the field at the research station of the University of Hohenheim. The authors thank KWS for providing the genotypic data and parts of phenotypes and highly appreciate the work of the breeding team at the KWS research station in Wohlde. We also thank the three anonymous reviewers of the initial version of the manuscript for their very helpful input and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Friedrich H. Longin.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standards

The authors declare that the experiments comply with the current laws of Germany.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 739 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boeven, P.H.G., Würschum, T., Rudloff, J. et al. Hybrid seed set in wheat is a complex trait but can be improved indirectly by selection for male floral traits. Euphytica 214, 110 (2018). https://doi.org/10.1007/s10681-018-2188-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10681-018-2188-1

Keywords

Navigation