Skip to main content
Log in

Influence of temperature on early hydration of Portland cement–metakaolin–slag system

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The hydration of ternary blended cements comprising Portland cement, metakaolin and blast-furnace slag was studied at different temperatures of 30, 40, 50 and 60 °C by isothermal calorimetry. Phase composition of hydration products was determined by thermal analysis and X-ray diffraction for sample hydrated at 60 °C. Hydration involves different sequential and successive reactions in which mechanism, kinetics and products are strongly influenced by temperature. Activation energy for each exothermic reaction was determined. The linear trend of heat flow maxima for 2nd, 3rd and 4th exotherm versus temperature was revealed. The first peak is related to formation of mostly amorphous aluminate hydrates with no evidence of crystalline ettringite. Formation of first crystalline ettringite detected by X-ray diffraction was correlated with the distinct 3rd peak that occurs after 2nd “silicate” peak that corresponds to formation of calcium silicate hydrates and calcium hydroxide. The 4th peak recognizable at temperatures above 40 °C is related to the conversion of ettringite to hemicarbonate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Antoni M, Rossen J, Martirena F, Scrivener K. Cement substitution by a combination of metakaolin and limestone. Cem Concr Res. 2012;42:1579–89.

    Article  CAS  Google Scholar 

  2. Kuliffayová M, Krajči Ľ, Janotka I, Šmatko V. Thermal behaviour and characterization of cement composites with burnt kaolin sand. J Therm Anal Calorim. 2012;108:425–32.

    Article  Google Scholar 

  3. Krajčí Ľ, Janotka I, Jamnický P. Burnt kaolin sand as pozzolanic material for cement hydration. Ceram Silik. 2007;51:217–24.

    Google Scholar 

  4. Morsy MS, Al-Salloum Y, Almusallam T, Abbas H. Effect of nano-metakaolin addition on the hydration characteristics of fly ash blended cement mortar. J Therm Anal Calorim. 2014;116:845–52.

    Article  CAS  Google Scholar 

  5. Snelson DG, Wild S, O’Farrell M. Heat of hydration of Portland cement–metakaolin–fly ash (PC–MK–PFA) blends. Cem Concr Res. 2008;38:832–40.

    Article  CAS  Google Scholar 

  6. Moser RD, Jayapalan AR, Garas VY, Kurtis KE. Assessment of binary and ternary blends of metakaolin and Class C fly ash for alkali-silica reaction mitigation in concrete. Cem Concr Res. 2010;40:1664–72.

    Article  CAS  Google Scholar 

  7. Frías M, de Rojas MIS, Cabrera J. The effect that the pozzolanic reaction of metakaolin has on the heat evolution in metakaolin-cement mortars. Cem Concr Res. 2000;30:209–16.

    Article  Google Scholar 

  8. Morsy MS. Effect of temperature on hydration kinetics and stability of hydration phases of metakaolin–lime sludge–silica fume system. Ceramics. 2005;49:225–9.

    Google Scholar 

  9. Li C, Sun H, Li L. A review: the comparison between alkali-activated slag (Si + Ca) and metakaolin (Si + Al) cements. Cem Concr Res. 2010;40:1341–9.

    Article  CAS  Google Scholar 

  10. Chen W, Brouwers HJP. The hydration of slag, part 1: reaction models for alkali-activated slag. J Mater Sci. 2007;42:428–43.

    Article  CAS  Google Scholar 

  11. Rahhal V, Cabrera O, Talero R, Delgado A. Calorimetry of Portland cement with silica fume and gypsum additions. J Therm Anal Calorim. 2007;87:331–6.

    Article  CAS  Google Scholar 

  12. Žemlička M, Kuzielová E, Kuliffayová M, Tkacz J, Palou MT. Study of hydration products in the model systems metakaolin–lime and metakaolin–lime–gypsum. Ceram Silik. 2015;59:283–91.

    Google Scholar 

  13. Li Z, Ding Z. Property improvement of Portland cement by incorporating with metakaolin and slag. Cem Concr Res. 2003;33:579–84.

    Article  CAS  Google Scholar 

  14. Lothenbach B, LeSaout G, Gallucci E, Scrivener K. Influence of limestone on the hydravion of Portland cements. Cem Concr Res. 2008;38:848–60.

    Article  CAS  Google Scholar 

  15. Kostuch JA, Walters GV, Jones TR. High performance concretes incorporating metakaolin—a review. In: Dhir RK, Jones MR, editors. Concrete 2000. London: E&FN Spon; 1993. p. 1799–811.

    Google Scholar 

  16. Nadeem A, Memon SA, Lo TY. Mechanical performance, durability, qualitative and quantitative analysis of microstructure of fly ash and metakaolin mortar at elevated temperatures. Constr Build Mater. 2013;38:338–47.

    Article  Google Scholar 

  17. Sha W, Pereira GB. Differential scanning calorimetry study of ordinary Portland cement paste containing metakaolin and theoretical approach of metakaolin activity. Cem Concr Compos. 2001;25:455–61.

    Article  Google Scholar 

  18. Gruyaert E, Robeyst N, De Belie N. Study of the hydration of Portland cement blended with blast-furnace slag by calorimetry and thermogravimetry. J Therm Anal Calorim. 2010;102:941–51.

    Article  CAS  Google Scholar 

  19. Palou MT, Kuzielová E, Novotny R, Šoukal F, Žemlička M. Blended cements consisting of Portland cement–slag–silica fume–metakaolin system. J Therm Anal Calorim, doi:10.1007/s10973-016-5399-5.

  20. Boháč M, Palou MT, Novotný R, Másilko J, Všianský D, Staněk T. Investigation on early hydration of Portland cement-blast-furnace slag-metakaolin ternary blends. Constr Build Mater. 2014;64:333–41.

    Article  Google Scholar 

  21. Šiler P, Krátký J, De Belie N. Isothermal and solution calorimetry to assess the effect of superplasticizers and mineral admixtures on cement hydration. J Therm Anal Calorim. 2012;107:313–20.

    Article  Google Scholar 

  22. Pacewska B, Wilinska I, Bukowska M. Calorimetric investigations of the influence of waste aluminosilicate on the hydration of different cements. J Therm Anal Calorim. 2009;97:61–6.

    Article  CAS  Google Scholar 

  23. Zielenkiewicz W, Kaminski M. A conduction calorimeter for Measuring the heat of cement hydration in the initial hydration period. J Therm Anal Calorim. 2001;65:335–40.

    Article  CAS  Google Scholar 

  24. Opravil T, Ptáček P, Šoukal F, Havlica J, Brandštetr J. The synthesis and characterization of an expansive admixture for M-type cements I. The influence of free CaO to the formation of ettringite. J Therm Anal Calorim. 2013;111:517–26.

    Article  CAS  Google Scholar 

  25. Šiler P, Kolářová I, Krátký J, Havlica J, Branštetr J. Influence of superplsticizers on the course of Portland cement hydration. Chem Pap. 2014;68:90–7.

    Google Scholar 

  26. Brouwers HJH. The work of Powers and Brownyard revisited: part 2. Cem Concr Res. 2005;35:1922–36.

    Article  CAS  Google Scholar 

  27. Copeland LE, Kantro DL, Verbeck GJ. Chemistry of hydration of Portland cement, Proceedings of Symposium on Chemistry Cement, Cement and Concrete Association, Washington, 1960;1:429–468.

  28. Thomas JJ. The instantaneous apparent activation energy of cement hydration measured using a novel calorimetry-based method. J Am Ceram Soc. 2012;95–10:3291–6.

    Article  Google Scholar 

  29. Ježo Ľ, Ifka T, Cvopa B, Škundová J, Kovár V, Palou M. Effect of temperature upon the strength development rate and upon the hydravion kinetice of cements. Ceram Silik. 2010;54:269–76.

    Google Scholar 

  30. Fratini E, Ridi F, Chen SH, Baglioni P. Hydration water and microstructure in calcium silicate and aluminate hydrates. J Phys: Condens Matter. 2006;18:S2467–83.

    CAS  Google Scholar 

  31. Escalante-Garcia JI. Nonevaporable water from neat OPC and replacement materials in composite cements hydrated at different temperatures. Cem Concr Res. 2003;33:1883–8.

    Article  CAS  Google Scholar 

  32. Love CA, Richardson IG, Brough AR. Composition and structure of C–S–H in white Portland cement—20% metakaolin pastes hydrated at 25 °C. Cem Concr Res. 2007;37:109–17.

    Article  CAS  Google Scholar 

  33. Cassagnabère F, Escadeillas G, Mouret M. Study of the reactivity of cement/metakaolin binders at early age for specific use in steam cured precast concrete. Constr Build Mater. 2009;23:775–84.

    Article  Google Scholar 

  34. Palou MT, Kuzielová E, Žemlička M, Boháč M, Novotný R. The effect of curing temperature on the hydration of binary Portland cement. Slag and Portland cement—metakaolin-blended cements. J Therm Anal Calorim. doi:10.1007/s10973-016-5395-9.

  35. Gallucci E, Mathur P, Scrivener KL. Microstructural development of early age hydration shells around cement grains. Cem Concr Res. 2010;40:4–13.

    Article  CAS  Google Scholar 

  36. Feldman RF, Ramachandran VS, Sereda PJ. Influence of CaCO3 on the hydration of 3CaO·Al2O3. J Am Ceram Soc. 1965;48:25–30.

    Article  CAS  Google Scholar 

  37. Bensted J. Some hydration investigations involving Portland cement effect of calcium carbonate substitution of gypsum. World Cem Technol. 1980;11:395–406.

    CAS  Google Scholar 

  38. Jansen D, Goetz-Neunhoeffer F, Lothenbach B, Neubauer J. The early hydration of Ordinary Portland Cement (OPC): an approach comparing measured heat flow with calculated heat flow from QXRD. Cem Concr Res. 2012;42:134–8.

    Article  CAS  Google Scholar 

  39. Moulin E, Blanc P, Sorrentino D. Influence of key cement chemical parameters on the properties of metakaolin. Cem Concr Compos. 2001;23:463–9.

    Article  CAS  Google Scholar 

  40. Justice JM, Kurtis KE. Influence of metakaolin surface area on properties of cement-based materials. ASCE J Mater Civ Eng. 2007;9:762–71.

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the Slovak VEGA Grant No. 2/0082/14 and for the project Sustainability and Development REG LO1211 addressed to the Materials Research Centre at FCH VUT, with financial support from National Programme for Sustainability I (Ministry of Education, Youth and Sports of Czech Republic).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Palou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boháč, M., Palou, M., Novotný, R. et al. Influence of temperature on early hydration of Portland cement–metakaolin–slag system. J Therm Anal Calorim 127, 309–318 (2017). https://doi.org/10.1007/s10973-016-5592-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-016-5592-6

Keywords

Navigation