Skip to main content
Log in

Calorimetric investigations of the influence of waste aluminosilicate on the hydration of different cements

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The aim of this work is to compare the influence of addition of waste aluminosilicate catalyst on the initial periods of hydration of different cements, i.e. calcium aluminate cements of different composition and Portland cement, basing on the calorimetric studies. Cement pastes containing up to 25 mass% of additive were studied, where the water/(cement+additive) ratio was 0.5. An attempt was undertaken to explain the mechanism of action of introduced aluminosilicate in the system of hydrating cement, particularly in the case of calcium aluminate cement pastes.

It was found that the presence of fine-grained additive caused in all studied cases the increase of the amount of released heat in the first period after the addition of water. In the case of aluminate cements with aluminosilicate addition, a significant reduction of induction time and faster precipitation of hydration products were observed compared to the reference sample (without additive). In the experimental conditions, the additive caused the acceleration of aluminate cements hydration, and the mechanism of its action is probably complex and can encompass: nucleative action of small grains and formation of new chemical compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Bukowska, B. Pacewska and I. Wilińska, Cem. Concr. Res., 34 (2004) 759.

    Article  CAS  Google Scholar 

  2. B. Pacewska, I. Wilińska, M. Bukowska, G. Blonkowski and W. Nocuń-Wczelik, J. Therm. Anal. Cal., 77 (2004) 133.

    Article  CAS  Google Scholar 

  3. B. Pacewska, I. Wilińska, M. Bukowska and W. Nocuń-Wczelik, Cem. Concr. Res., 32 (2002) 1823.

    Article  CAS  Google Scholar 

  4. Y.-S. Tseng, C.-L. Huang and K.-C. Hsu, Cem. Concr. Res., 35 (2005) 782.

    Article  CAS  Google Scholar 

  5. B. Pacewska, M. Bukowska, I. Wilińska and M. Swat, Cem. Concr. Res., 32 (2002) 145.

    Article  CAS  Google Scholar 

  6. H.-L. Chen, Y.-S. Tseng and K.-C. Hsu, Cem. Concr. Compos., 26 (2004) 657.

    Article  CAS  Google Scholar 

  7. K.-C. Hsu, Y.-S. Tseng, F.-F. Ku and N. Su, Cem. Concr. Res., 31 (2001) 1815.

    Article  CAS  Google Scholar 

  8. J. Dweck, C. A. Pinto and P. M. Büchler, J. Therm. Anal. Cal., 92 (2008) 121.

    Article  CAS  Google Scholar 

  9. J. Payá, J. Monzó and M. V. Borrachero, Cem. Concr. Res., 31 (2001) 57.

    Article  Google Scholar 

  10. M. Gracía de Lomas, M. I. Sánchez de Rojas and M. Frías, J. Therm. Anal. Cal., 90 (2007) 443.

    Article  Google Scholar 

  11. C. A. Pinto, P. M. Büchler and J. Dweck, J. Therm. Anal. Cal., 87 (2007) 715.

    Article  CAS  Google Scholar 

  12. J. Payá, J. Monzó, M.V. Borrachero, S. Velázquez and M. Bonilla, Cem. Concr. Res., 33 (2003) 1085.

    Article  Google Scholar 

  13. I. Pundene, S. Goberis, V. Antonovich and R. Stonis, Refract. Ind. Ceram., 47 (2006) 330.

    Article  CAS  Google Scholar 

  14. Information of Górkal cement producer, published on a webpage: www.gorka.com.pl.

  15. J. Poznañski, Computer software for processing of data obtained from calorimeter, 2005.

  16. J. Bensted, Cement Wapno Beton, 3 (2004) 109.

    Google Scholar 

  17. A. Smith, T. Chotard, N. Gimet-Breart and D. Fargeot, J. Eur. Ceram. Soc., 22 (2002) 1947.

    Article  CAS  Google Scholar 

  18. T. J. Chotard, M. P. Boncoeur-Martel, A. Smith, J. P. Dupuy and C. Gault, Cem. Concr. Compos., 25 (2003) 145.

    Article  CAS  Google Scholar 

  19. Th. Perraki, G. Kakali and F. Kontoleon, Microporous Mesoporous Mater., 61 (2003) 205.

    Article  CAS  Google Scholar 

  20. D. Caputo, B. Liguori and C. Colella, Cem. Concr. Compos., 30 (2008) 455.

    Article  CAS  Google Scholar 

  21. J. Ding, Y. Fu and J. J. Beaudoin, Cem. Concr. Res., 25 (1995) 1311.

    Article  CAS  Google Scholar 

  22. J. M. Rivas Mercury, X. Turrillas, A. H. de Aza and P. Pena, J. Solid State Chem., 179 (2006) 2988.

    Article  CAS  Google Scholar 

  23. M. Collepardi, S. Monosi and P. Piccioli, Cem. Concr. Res., 25 (1995) 961.

    Article  CAS  Google Scholar 

  24. Y. Fu, J. Ding and J. J. Beaudoin, Adv. Cem. Bas. Mater., 3 (1996) 37.

    Article  CAS  Google Scholar 

  25. J. Ding, Y. Fu and J. J. Beaudoin, Adv. Cem. Bas. Mater., 4 (1996) 43.

    CAS  Google Scholar 

  26. M. Heikal, M. S. Morsy and M. M. Radwan, Cem. Concr. Res., 35 (2005) 1438.

    Article  CAS  Google Scholar 

  27. K. Quillin, G. Osborne, A. Majumdar and B. Singh, Cem. Concr. Res., 31 (2001) 627.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barbara Pacewska.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pacewska, B., Wilińska, I. & Bukowska, M. Calorimetric investigations of the influence of waste aluminosilicate on the hydration of different cements. J Therm Anal Calorim 97, 61–66 (2009). https://doi.org/10.1007/s10973-008-9668-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-008-9668-9

Keywords

Navigation