Skip to main content
Log in

Thermal behaviour and characterization of cement composites with burnt kaolin sand

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The kaolin sand containing 36 wt% of kaolinite was thermally transformed at 650 °C/L h to the burnt kaolin sand (BKS) with relevant content of metakaolinite. Thermal behaviour of composites with substitution of Portland cement (PC) by the BKS containing 0, 5, 10 and 15 wt% of metakaolinite and water-to-solid ratio of 0.5 kept for 90 days in 20 ± 1 °C water was studied by thermal analysis. TG/DTA/DTG studies concerned calciumsilicate hydrate and calciumaluminate hydrate formation, portlandite dehydroxylation and calcite decarbonation. The influence of curing time and metakaolinite content were estimated. The reduction in portlandite content was observed in PC–BKS composites opposite to that found in the reference PC system. Compressive strength uptakes were observed in PC–BKS composites relative to that of reference PC system. BKS is characterized as effective pozzolanic material giving cement composites of high performance. The above findings were confirmed by X-ray diffraction analysis (XRD) and scanning electron microscopy (SEM) results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Caijun S, Jimenez AF, Palomo A. New cements for 21st century: the pursuit of an alternative to Portland cement. Cem Concr Res. 2011;41:750–63.

    Article  Google Scholar 

  2. Mojumdar SC. Processing-moisture resistance and thermal analysis of macrodefect-free materials. J Therm Anal Calorim. 2001;64:1133–9.

    Article  CAS  Google Scholar 

  3. Palou M, Majling J, Dováľ M, Kozánková J, Mojumdar SC. Formation and stability of crystallohydrates in the non-equilibrium system during hydration SAB cements. Ceramics Silikaty. 2005;49:230–6.

    CAS  Google Scholar 

  4. Souza PSL, Molin DCCD. Viability of using calcined clays from industrial by-products as pozzolans of high reactivity. Cem Concr Res. 2005;35:1993–8.

    Article  CAS  Google Scholar 

  5. Papadakis VG, Tsimas S. Supplementary cementing materials in concrete part I: efficiency and design. Cem Concr Res. 2002;32:1035–41.

    Google Scholar 

  6. Rahhal V, Talero R. Fast physics–chemical and calorimetric characterization of natural pozzolans and other aspects. J Therm Anal Calorim. 2009;99:479–86.

    Article  Google Scholar 

  7. Thomas MDA, Shehata MH, Shashiprakash SG, Hopkins DS, Cail K. Use of ternary cementitious systems containing silica fume and fly ash in concrete. Cem Concr Res. 1999;29:1207–14.

    Article  CAS  Google Scholar 

  8. Ashraf M, Khan AN, Ali Q, Mirza J, Goyal A, Anwar AM. Physico–chemical, morphological and thermal analysis for the combined pozzolanic activities of minerals additives. Constr Build Mater. 2009;23:2207–13.

    Article  Google Scholar 

  9. Gesoglu M, Güneyisi E, Özbay E. Properties of self-compacting concretes made with binary, ternary and quaternary cementitious blends of fly ash, blastfurnace slag and silica fume. Constr Build Mater. 2009;23:1847–54.

    Article  Google Scholar 

  10. da Cunha ALC, Goncalves JP, Büchler PM, Dweck J. Effect of metakaolin pozzolanic activity in the early stages of cement type II paste and mortar hydration. J Therm Anal Calorim. 2008;92:115–9.

    Article  Google Scholar 

  11. Talero R, Rahhal V. Calorimetric comparison of Portland cements containing silica fume and metakaolin. Is silica fume, like metakaolin characterized by pozzolanic activity that is more specific than generic? J Therm Anal Calorim. 2009;96:383–93.

    Article  CAS  Google Scholar 

  12. Moser RD, Jayapalan AR, Garas VY, Kurtis KE. Assessment of binary and ternary blends of metakaolin and class C fly ash for alkali–silica reaction mitigation in concrete. Cem Concr Res. 2010;40:1664–72.

    Article  CAS  Google Scholar 

  13. Schebl SS. Development of new efficient premixed blended metakaolin–cementitious fireproofing compounds. Cement Wapno Beton. 2010;15(/77):279–88.

    Google Scholar 

  14. Cassagnabere F, Mouret M, Escadeillas G, Broillard P. Metakaolin, a solution for the precast industry to limit the clinker content in concrete: mechanical aspects. Constr Build Mater. 2010;24:1109–18.

    Article  Google Scholar 

  15. Shekarchi M, Benakdas A, Bakhshi M, Mirdamadi A, Mobasher B. Transport properties in metakaolin blended concrete. Constr Build Mater. 2010;24:2217–23.

    Article  Google Scholar 

  16. Bakolas A, Aggelakopoulou E, Moropoulou A, Anagnostopoulou S. Evaluation of pozzolanic activity and physico-mechanical characteristics in metakaolin-lime pastes. J Therm Anal Calorim. 2006;84:157–63.

    Article  CAS  Google Scholar 

  17. Samet B, Mnif T, Chaabouni M. Use of kaolinitic clay as a pozzolanic material for cements: formulation of blended cement. Cem Concr Comp. 2007;29:741–9.

    Article  CAS  Google Scholar 

  18. Parande AK, Babu BR, Karthik MA, Kumaar D, Palaniswamy N. Study on strength and corrosion performance for steel embedded in metakaolin blended concrete/mortar. Constr Build Mater. 2008;22:127–34.

    Article  Google Scholar 

  19. Chakchouk A, Trifi L, Samet B, Bouaziz S. Formulation of blended cement: effect of process variables on clay pozzolanic activity. Constr Build Mater. 2009;23:1365–73.

    Article  Google Scholar 

  20. Bich CH, Ambroise J, Pera J. Influence of degree of dehydroxylation on the pozzolanic activity of metakaolin. Appl Clay Sci. 2009;44:194–200.

    Article  CAS  Google Scholar 

  21. Sha W. Differential scanning calorimetry study of the hydration products in Portland cement pastes with metakaolin replacement. In: Anson M, Ko JM, Lam ESS, editors. Proceedings of the international conference on advances in building technology (vol. 1). Hong Kong: ABT; 2002. p. 881–888.

  22. Asbridge AH, Jones TR, Osborne GJ. High performance metakaolin concrete: results of large scale trials in aggressive environments. In: Dhir RK, Hewlett PC, editors. Proceedings of the international conference on concrete in the service of mankind. Dundee: Radical Concrete Technology; 1996. p. 13–24.

    Google Scholar 

  23. Caldarone MA, Gruber KA, Burg RG. High reactivity metakaolin: a new generation mineral admixture. Concr Int. 1994;16:37–40.

    CAS  Google Scholar 

  24. Frias M, Cabrera J. Pore size distribution and degree of hydration of metakaolin–cement pastes. Cem Concr Res. 2000;30:561–9.

    Article  CAS  Google Scholar 

  25. Rojas MF, de Rojas MIS. Influence of metastable hydrated phases on the pore size distribution and degree of hydration of metakaolin-blended cements cured at 60 °C. Cem Concr Res. 2005;35:1292–8.

    Article  CAS  Google Scholar 

  26. Siddique R, Klaus J. Influence of metakaolin on the properties of mortars and concrete: a review. Appl Clay Sci. 2009;44:194–200.

    Article  Google Scholar 

  27. Khatib JM, Wild S. Pore size distribution of metakaolin paste. Cem Concr Res. 1996;26:1545–53.

    Article  CAS  Google Scholar 

  28. Khater AM. Influence of metakaolin on resistivity of cement mortar to magnesium chloride solution. Ceramics Silikaty. 2010;54:325–33.

    CAS  Google Scholar 

  29. Jerga J, Halas P. Ingress of chloride into the prestressed concrete structure. In: Proceedings of the 5th international conference on concrete. Prague: ICC; 1990. p. 400–404.

  30. Jerga J. Physico-mechanical properties of carbonated concrete. Constr Build Mater. 2004;18:645–52.

    Article  Google Scholar 

  31. Badogiannis E, Tsivilis S. Exploitation of poor Greek kaolins: durability of metakaolin concrete. Cem Concr Comp. 2009;31:128–33.

    Article  CAS  Google Scholar 

  32. Badogiannis E, Kakali G, Dimopoulou G, Chaniotakis E, Tsivilis S. Metakaolin as a main cement constituent. Exploitation of poor Greek kaolins. Cem Concr Comp. 2005;27:197–203.

    Article  CAS  Google Scholar 

  33. Kraus I, Uhlík P, Dubíková, M, Manfredini T, Pavlíková J, Šucha V, Hanisková M, Honty M. Mineralogical, chemical and technological characterization of kaolin sands. In: Proceedings of the international conference Euroclay (book of abstracts). Modena: ICE; 2003. p. 160–161.

  34. Krajči L’, Janotka I, Kraus I, Jamnický P. Burnt kaolin sand as pozzolanic material for cement hydration. Ceramics Silikaty. 2007;51:217–24.

    Google Scholar 

  35. Janotka I, Krajči L’, Kuliffayová M, Kraus I. Metakaolin sand—a prospective substitute for Portland cement. In: Proceedings of the 4th mid-European clay conference MECC 2008. Zakopane: ECC; 2008. p. 72.

  36. Janotka I, Puertas F, Palacios M, Varga C, Krajči L’. Metakaolin sand—a promising addition for Portland cement. Mater de Constr. 2010;60:73–88.

    Article  CAS  Google Scholar 

  37. STN EN 197-1 Cement. Part I: Composition, specifications and conformity criteria for common cements. 2002. Accessed 1 April 2002.

  38. Eberl DD User’s guide to Rock Jock—a program for determining quantitative mineralogy from powder X-ray diffraction data. In: U.S. geological survey, open-file report 03-78; 2003. p. 47.

  39. STN EN 196-3 + A1. Methods of testing cements. Part 3: determination of setting time and soundness. 2009. Accessed 1 May 2009.

  40. STN EN 196-1. Methods of testing cement. Part 1: determination of strength. 2005. Accessed 22 March 2005.

  41. STN EN 196-2. Methods of testing cement. Part 2: chemical analysis of cement. 2005. Accessed 1 November 2005.

  42. Bágeľ Ľ, Živica V. Relationship between pore structure and permeability of hardened cement mortars. Cem Concr Res. 1997;27:1225–35.

    Article  Google Scholar 

  43. Janotka I, Bágeľ Ľ. Bound water content, permeability and residual compressive strength at high temperatures. In: Dhir RK, editor. Proceedings of the 6th international symposium on global constructions and ultimate concrete opportunities, section: role of concrete in nuclear facilities. Dundee: GGBS; 2005. p. 51–58.

Download references

Acknowledgements

The authors are thankful to the Slovak Grant Agency (projects No. 2/0064/12 and No. 2/0053/11) for the financial support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Kuliffayová.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuliffayová, M., Krajči, L., Janotka, I. et al. Thermal behaviour and characterization of cement composites with burnt kaolin sand. J Therm Anal Calorim 108, 425–432 (2012). https://doi.org/10.1007/s10973-011-1964-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-011-1964-0

Keywords

Navigation