Skip to main content
Log in

Three-dimensional graphene oxide/phytic acid composite for uranium(VI) sorption

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

In this work, a novel three dimensional graphene oxide sponge composite material was synthesized by functionalized GO sheets with phytic acid (PA). The as-synthesized samples were characterized and employed to investigate the removal of U(VI) from aqueous solution. Results show that higher pH favored the sorption of uranium on PA–GO. Ionic strength puts insignificant influence on the sorption. The maximum adsorption capacity is 124.3 mg g−1 at pH 5.5. The adsorption isotherms can be well described by Langmuir isotherm model and the sorption kinetics has been successfully modeled by pseudo-second-order kinetic model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Craft ES, Abu-Qare AW, Flaherty MM, Garofolo MC, Rincavage HL, Abou-Donia MB (2004) Depleted and natural uranium: chemistry and toxicological effects. J Toxicol Environ Health Part B 7:297–317

    Article  CAS  Google Scholar 

  2. Sheppard SC, Sheppard MI, Gallerand M, Sanipelli BJ (2005) Derivation of ecotoxicity thresholds for uranium. Environ Radioact 79:55–83

    Article  Google Scholar 

  3. Aziz A, Jan S, Waqar F, Mohammad B, Hakim M, Yawar W (2010) Selective ion exchange separation of uranium from concomitant impurities in uranium materials and subsequent determination of the impurities by ICP-OES. J Radioanal Nucl Chem 284:117–121

    Article  CAS  Google Scholar 

  4. Stoliker DL, Kaviani N, Kent DB, Davis JA (2013) Evaluating ion exchange resin efficiency and oxidative capacity for the separation of uranium(IV) and uranium(VI). Geochem Trans 14:1–9

    Article  CAS  Google Scholar 

  5. Chou CL, Moffatt JD (2000) A simple co-precipitation inductively coupled plasma mass spectrometric method for the determination of uranium in seawater. Fresenius J Anal Chem 368:59–61

    Article  CAS  Google Scholar 

  6. Jyothi A, Rao GN (1990) Solvent extraction behaviour of lanthanum (III), cerium (III), europium (III), thorium (IV) and uranium (VI) with 3-phenyl-4-benzoyl-5-isoxazolone. Talanta 37:431–433

    Article  CAS  Google Scholar 

  7. Ramadevi G, Sreenivas T, Navale AS, Padmanabhan NPH (2012) Solvent extraction of uranium from lean grade acidic sulfate leach liquor with alamine 336 reagent. J Radioanal Nucl Chem 294:13–18

    Article  CAS  Google Scholar 

  8. Giridhar P, Venkatesan KA, Subramaniam S (2008) Extraction of uranium (VI) by 1.1 M tri- n-butylphosphate/ionic liquid and the feasibility of recovery by direct electrodeposition from organic phase. J Alloy Compd 448:104–108

    Article  CAS  Google Scholar 

  9. Kim GN, Kim SS, Park HM, Kim WS, Park UR, Moon JK (2013) Remediation of soil/concrete contaminated with uranium and radium by biological method. J Radioanal Nucl Chem 297:71–78

    Article  CAS  Google Scholar 

  10. St John AM, Cattrall RW, Kolev SD (2010) Extraction of uranium (VI) from sulfate solutions using a polymer inclusion membrane containing di-(2-ethylhexyl) phosphoric acid. J Membr Sci 364:354–361

    Article  CAS  Google Scholar 

  11. Sifniades S, Largman T, Tunick AA (1981) Recovery of uranium from phosphoric acid by means of supported liquid membranes. Hydrometallurgy 7:201–212

    Article  CAS  Google Scholar 

  12. McCleskey TM, Ehler DS, Young JS (2002) Asymmetric membranes with modified gold films as selective gates for metal ion separations. J Membr Sci 210:273–278

    Article  CAS  Google Scholar 

  13. Mishra S, Maity S, Bhalke S, Pandit GG, Puranik VD, Kushwaha HS (2012) Thermodynamic and kinetic investigations of uranium adsorption on soil. J Radioanal Nucl Chem 294:97–102

    Article  CAS  Google Scholar 

  14. Zareh MM, Aldaher A, Hussein AEM, Mahfouz MG, Soliman M (2013) Uranium adsorption from a liquid waste using thermally and chemically modified bentonite. J Radioanal Nucl Chem 295:1153–1159

    Article  CAS  Google Scholar 

  15. Gupta VK, Saleh TA (2013) Sorption of pollutants by porous carbon, carbon nanotubes and fullerene—an overview. Environ Sci Pollut Res 20:2828–2843

    Article  CAS  Google Scholar 

  16. Ma Y, Gao NY, Chu WH, Li C (2013) Removal of phenol by powdered activated carbon adsorption. Front Environ Sci Eng 7:158–165

    Article  CAS  Google Scholar 

  17. Qu J, Zhang Q, Xia YS, Cong Q, Luo CQ (2015) Synthesis of carbon nanospheres using fallen willow leaves and adsorption of Rhodamine B and heavy metals by them. Environ Sci Pollut Res 22:1408–1419

    Article  CAS  Google Scholar 

  18. Guryanov VV, Petukhova GA, Dubinina LA, Lu SS (2010) Determination of parameters of porous structure of carbon adsorbent during analysis of vapor adsorption isotherms in region of polymolecular adsorption. Prot Met Phys Chem 46:191–196

    Article  CAS  Google Scholar 

  19. Yavari R, Huang YD, Mostofizadeh A (2010) Sorption of strontium ions from aqueous solutions by oxidized multiwall carbon nanotubes. J Radioanal Nucl Chem 285:703–710

    Article  CAS  Google Scholar 

  20. Caccin M, Giacobbo F, Ros MD, Besozzi L, Mariani M (2013) Adsorption of uranium, cesium and strontium onto coconut shell activated carbon. J Radioanal Nucl Chem 297:9–18

    Article  CAS  Google Scholar 

  21. Yue YF, Sun XG, Mayes RT, Kim JS, Fulvio PF, Qiao ZA, Brown S, Tsouris C, Oyola Y, Dai S (2013) Polymer-coated nanoporous carbons for trace seawater uranium adsorption. Sci China Chem 56:1510–1515

    Article  CAS  Google Scholar 

  22. Wang MM, Qiu J, Tao XQ, Wu CP, Cui WB, Liu Q (2011) Effect of pH and ionic strength on U(IV) sorption to oxidized multiwalled carbon nanotubes. J Radioanal Nucl Chem 288:895–901

    Article  CAS  Google Scholar 

  23. Wu WQ, Yang Y, Zhou HH, Ye TT, Huang ZY, Liu R, Kuang YF (2012) Highly efficient removal of Cu(II) from aqueous solution by using graphene oxide. Water Air Soil Pollut 224:1372–1379

    Article  Google Scholar 

  24. Xu J, Lv H, Yang ST, Luo J (2013) Preparation of grapheme adsorbents and their applications in water purification. Rev Inorg Chem 33:139–160

    Article  CAS  Google Scholar 

  25. Zhao LQ, Xue FM, Yu BW, Xie JR, Zhang XL, Wu RH, Wang RJ, Hu ZY, Yang ST, Luo JB (2015) TiO2-graphene sponge for the removal of tetracycline. J Nanopart Res 17:16

    Article  Google Scholar 

  26. Zhao JP, Ren WC, Cheng HM (2012) Graphene sponge for efficient and repeatable adsorption and desorption of water contaminations. J Mater Chem 22:20197–20202

    Article  CAS  Google Scholar 

  27. Bi HC, Xie X, Yin KB, Zhou YL, Wan S, He LB, Xu F, Banhart F, Sun LT, Ruoff RS (2012) Spongy graphene as a highly efficient and recyclable sorbent for oils and organic solvents. Adv Funct Mater 22:4421–4425

    Article  CAS  Google Scholar 

  28. Lei YL, Chen F, Luo YJ, Zhang L (2014) Three-dimensional magnetic graphene oxide foam/Fe3O4 nanocomposite as an efficient absorbent for Cr(VI) removal. J Mater Sci 49:4236–4245

    Article  CAS  Google Scholar 

  29. Tsao GT, Zheng YZ, Lu J, Radioanal Gong J, Nucl Chem CS (1997) Adsorption of heavy metal ions by immobilized phytic acid. Appl Biochem Biotech 63–65:731–741

    Article  Google Scholar 

  30. Ferial D, Georg S (2004) In vitro analysis of binding capacities of calcium to phytic acid in different food samples. Eur Food Res Technol 219:409–415

    Google Scholar 

  31. Williams PAM, Baran EJ (1993) The interaction of the vanadyl(IV) cation with phytic acid. Biol Trace Elem Res 36:143–150

    Article  CAS  Google Scholar 

  32. Ulusoy U, Şimşek S, Ceyhan Ö (2003) Investigations for modification of polyacrylamide-bentonite by phytic acid and its usability in Fe3+, Zn2+ and UO2 2+ adsorption. Adsorption 9:165–175

    Article  CAS  Google Scholar 

  33. Mishra AK, Ramaprabhu S (2011) Functionalized graphene sheets for arsenic removal and desalination of sea water. Desalination 282:39–45

    Article  CAS  Google Scholar 

  34. Gu ZX, Wang Y, Tang J, Yang JJ, Liao JL, Yang YY, Liu N (2015) The removal of uranium(VI) from aqueous solution by graphene oxide–carbon nanotubes hybrid aerogels. J Radioanal Nucl Chem 303:1835–1842

    Article  CAS  Google Scholar 

  35. Bonato M, Ragnarsdottir KV, Allen GC (2012) Removal of uranium(VI), lead(II) at the surface of TiO2 nanotubes studied by X-ray photoelectron spectroscopy. Water Air Soil Pollut 223:3845–3857

    Article  CAS  Google Scholar 

  36. Liu YL, Yuan LY, Yuan YL, Lan JH, Li ZJ, Feng YX, Zhao YL, Chai ZF, Shi WQ (2012) A high efficient sorption of U(VI) from aqueous solution using amino-functionalized SBA-15. J Radioanal Nucl Chem 292:803–810

    Article  CAS  Google Scholar 

  37. Reddad Z, Gerente C, Andres Y, Cloirec LP (2002) Adsorption of several metal ions onto a low-cost biosorbent: kinetic and equilibrium studies. Environ Sci Technol 36:2067–2073

    Article  CAS  Google Scholar 

  38. Sahiner N, Yu HN, Tan G, He JB, John VT, Blake DA (2012) Highly porous acrylonitrile-based submicron particles for UO2 2+ absorption in an immunosensor assay. ACS Appl Mater Interfaces 4:163–170

    Article  CAS  Google Scholar 

  39. Song WC, Shao DD, Lu SS, Wang XK (2014) Simultaneous removal of uranium and humic acid by cyclodextrin modified graphene oxide nanosheets. Sci China Chem 57:1291–1299

    Article  CAS  Google Scholar 

  40. Langmuir I (1916) The constitution and fundamental properties of solids and liquids. J Am Chem Soc 38:2221–2295

    Article  CAS  Google Scholar 

  41. Freundlich HMF (1906) Over the adsorption in solution. J Phys Chem 57:385–471

    CAS  Google Scholar 

  42. Unlu N, Ersoz M (2006) Adsorption characteristics of heavy metal ions onto a low cost biopolymeric sorbent from aqueous solutions. J Hazard Mater 136:272–280

    Article  Google Scholar 

  43. Ho YS, McKay G (1998) Sorption of dye from aqueous solution by peat. Chem Eng J 70:115–124

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the support of financial support from the National Natural Science Foundation of China (Grants 21367001) and Jiangxi Educational Committee Foundation (GJJ13471). Fundamental Science on Radioactive Geology and Exploration Technology Laboratory (2011RGET015) and State Key Laboratory Breeding Base of Nuclear Resources and Environment, East China Institute of Technology, provided technical assistance (NRE1318).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianguo Ma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, S., Ma, J., Zhang, W. et al. Three-dimensional graphene oxide/phytic acid composite for uranium(VI) sorption. J Radioanal Nucl Chem 306, 507–514 (2015). https://doi.org/10.1007/s10967-015-4162-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-015-4162-x

Keywords

Navigation