Skip to main content
Log in

Uranium adsorption from a liquid waste using thermally and chemically modified bentonite

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

In this work, uranium adsorption from aqueous (waste) solution onto thermal and chemical modified bentonite (TCMB) has been studied. The relevant factors affecting uranium adsorption onto our TCMB adsorbent were studied. These factors involved contact time, initial uranium concentrations, pH, adsorption temperature, foreign ion and the effect adsorbent (TCMB) amount using synthetic solution. The theoretical capacity of TCMB adsorbent is about 29 mg/g TCMB. The optimum adsorption conditions were choiced. Uranium elution from the loaded TCMB adsorbent has been carried out using CH3COONa as an effective eluent. Uranium adsorption from Gattar liquid waste by TCMB adsorbent was carried out in columns. The low uranium adsorption efficiency (37.5 % of the theoretical capacity of TCMB) may be due to the adsorption competition between uranium and difference foreign ion present in the solution (as iron). More than 92 % of the loaded uranium amount on the TCMB adsorbent has been eluted using CH3COONa as an efficient eluent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Bargar JR, Reitmeyer R, Davis JA (1999) Spectroscopic confirmation of uranium(VI)–carbonato adsorption complexes on hematite. Geochim Cosmochim Acta 33:2481–2484

    CAS  Google Scholar 

  2. Bargar JR, Reitmeyer R, Lenhart JJ, Davis JA (2000) Characterization of uranium(VI)–carbonato complexes on hematite: EXAFS and electrophoretic mobility measurements. Geochim Cosmochim Acta 64:2737–2749

    Article  CAS  Google Scholar 

  3. Yusan S, Akyil S (2008) Sorption of uranium(VI) from aqueous solutions b akaganeite. J Hazard Mater 160:388–395

    Article  CAS  Google Scholar 

  4. Ganesh R, Robinson KG, Chu LL, Kucsmas D, Reed GD (1999) Reductive precipitation of uranium by Desulfovibrio, desulfuricans: evaluation of cocontaminant effects and selective removal. Water Res 33:3447–3458

    Article  CAS  Google Scholar 

  5. Kryvoruchko AP, Yurlova LY, Atamanenko ID, Kornilovich BY (2004) Ultrafiltration removal of U(VI) from contaminated water. Desalination 162:229–236

    Article  CAS  Google Scholar 

  6. Mellah A, Chegrouche S, Barkat M (2006) The removal of uranium(VI) from aqueous solutions onto activated carbon: kinetic and thermodynamic investigations. J Colloid Interface Sci 296:434–441

    Article  CAS  Google Scholar 

  7. Sodayea H, Nisanb S, Poletikoc C, Prabhakara S, Tewaria PK (2009) Extraction of uranium from the concentrated brine rejected by integrated nuclear desalination plants. Desalination 235:9–32

    Article  Google Scholar 

  8. Donia AM, Atia AA, Moussa MM, Sherif AM, Magied MO (2009) Removal of uranium(VI) from aqueous solutions using glycidyl methacrylate chelating resins. Hydrometallurgy 95:183–189

    Article  CAS  Google Scholar 

  9. Morsy AMA, Hussein AEM (2011) Adsorption of uranium from crude phosphoric acid using activated carbon. J Radioanal Nucl Chem 288:341–346

    Article  CAS  Google Scholar 

  10. Donat R (2009) The removal of uranium(VI) from aqueous solutions onto natural sepiolite. J Chem Thermodyn 41:829–835

    Article  CAS  Google Scholar 

  11. Guanghui W, Xuegang W, Xinjun, Jinsheng L, Nansheng D (2010) Adsorption of uranium(VI) from aqueous solution on calcined and acid-activated kaolin. Appl Clay Sci 47:448–451

    Article  Google Scholar 

  12. Marczenko Z (1976) Spectrophotometric determination of elements. Ellis Horwood Ltd., Chichester

    Google Scholar 

  13. Breen C, Watson R (1998) Acid-activated organoclays: preparation, characterisation and catalytic activity of polycation-treated bentonites. Appl Clay Sci 12(6):479–494

    Article  CAS  Google Scholar 

  14. Christidis PW, Scott AC (1997) Dunham acid activation and bleaching capacity of bentonites from the islands of Milos and Chios, Aegean, Greece. Appl Clay Sci 12(4):329–347

    Article  CAS  Google Scholar 

  15. Chegrouche S, Mellah A, Telmoune S (1997) Water Res 31:1733–1737

    Article  CAS  Google Scholar 

  16. Mellah A, Chegrouche S (1997) Water Res 31:621–629

    Article  CAS  Google Scholar 

  17. Bhatnagar A, Jain AK (2005) J Colloid Interface Sci 28(1):49–55

    Article  Google Scholar 

  18. Ho YS, McKay G (1999) Water Res 33:578–584

    Article  CAS  Google Scholar 

  19. Worku N, Feleke Z, Chandravanshi BS (2007) Removal of excess fluoride from water using waste residue from alum manufacturing process. J Hazard Mater 147:954–963

    Article  Google Scholar 

  20. Arami M, Limaee NY, Mahmoodi NM, Tabrizi NS (2005) Removal of dyes from colored textile wastewater by orange peel adsorbent: equilibrium and kinetic studies. J Colloid Interface Sci 288:371–376

    Article  CAS  Google Scholar 

  21. Misaelides P, Godelitsas A, Filippidis A, Charistos D, Anousis C (1995) Thorium and uranium uptake by natural zeolitic materials. Sci Total Environ 173(174):237–246

    Article  Google Scholar 

  22. Shuibo X, Chun Z, Xinghuo Z, Jing Y, Xiaojian Z, Jingsong W (2009) Removal of uranium(VI) from aqueous solution by adsorption of hematite. J Environ Radioact 100:162–166

    Article  Google Scholar 

  23. Fan F, Ding H, Bai J, Wu X, Lei F, Tian W, Wang Y, Qin Z (2011) Sorption of uranium(VI) from aqueous solution onto magnesium silicate hollow spheres. J Radioanal Nucl Chem 289:367–375

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to express their sincere thanks to Prof. Dr. E. M. Hussein and Prof. Dr. K. F. Mahmoud for their deeply useful scientific discussions during performing this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. E. M. Hussein.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zareh, M.M., Aldaher, A., Hussein, A.E.M. et al. Uranium adsorption from a liquid waste using thermally and chemically modified bentonite. J Radioanal Nucl Chem 295, 1153–1159 (2013). https://doi.org/10.1007/s10967-012-2234-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-012-2234-8

Keywords

Navigation