Skip to main content
Log in

Three-dimensional magnetic graphene oxide foam/Fe3O4 nanocomposite as an efficient absorbent for Cr(VI) removal

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

We developed a novel three-dimensional (3D) graphene oxide foam/Fe3O4 nanocomposite (GOF/Fe3O4) and evaluated its adsorption performance for Cr(IV) removal. The 3D free-standing graphene foam was firstly synthesized on nickel foam and then oxidized and magnetically functionalized with Fe3O4 nanoparticles to form GOF/Fe3O4. The GOF/Fe3O4 exhibited a very large surface area of 574.2 m2/g, a high saturation magnetization of 40.2 emu/g, and a maximum absorption capacity of 258.6 mg/g for Cr(IV) removal, which significantly outperformed the reported 2D graphene-based adsorbents and other conventional adsorbents. The present work may offer a way to prepare a range of 3D magnetic graphene-based adsorbents for application in effective removal of heavy metal ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Bradl HB (2004) Adsorption of heavy metal ions on soils and soils constituents. J Colloid Interf Sci 277:1–18

    Article  Google Scholar 

  2. Hua M, Zhang S, Pan B, Zhang W, Lv L, Zhang Q (2012) Heavy metal removal from water/wastewater by nanosized metal oxides: a review. J Hazard Mater 211:317–331

    Article  Google Scholar 

  3. Kadirvelu K, Thamaraiselvi K, Namasivayam C (2001) Removal of heavy metals from industrial wastewaters by adsorption onto activated carbon prepared from an agricultural solid waste. Bioresour Technol 76:63–65

    Article  Google Scholar 

  4. Erdem E, Karapinar N, Donat R (2004) The removal of heavy metal cations by natural zeolites. J Colloid Interf Sci 280:309–314

    Article  Google Scholar 

  5. Bois L, Bonhommé A, Ribes A, Pais B, Raffin G, Tessier F (2003) Functionalized silica for heavy metal ions adsorption. Colloid Surf A 221:221–230

    Article  Google Scholar 

  6. Hu JS, Zhong LS, Song WG, Wan LJ (2008) Synthesis of hierarchically structured metal oxides and their application in heavy metal ion removal. Adv Mater 20:2977–2982

    Article  Google Scholar 

  7. Stafiej A, Pyrzynska K (2007) Adsorption of heavy metal ions with carbon nanotubes. Sep Purif Technol 58:49–52

    Article  Google Scholar 

  8. Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6:183–191

    Article  Google Scholar 

  9. Kim KS, Zhao Y, Jang H, Lee SY, Kim JM, Kim KS et al (2009) Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457:706–710

    Article  Google Scholar 

  10. Hernandez Y, Nicolosi V, Lotya M, Blighe FM, Sun Z, De S et al (2008) High-yield production of graphene by liquid-phase exfoliation of graphite. Nat Nanotechnol 3:563–568

    Article  Google Scholar 

  11. Ramesha G, Vijaya Kumara A, Muralidhara H, Sampath S (2011) Graphene and graphene oxide as effective adsorbents toward anionic and cationic dyes. J Colloid Interface Sci 361:270–277

    Article  Google Scholar 

  12. Zhang K, Dwivedi V, Chi C, Wu J (2010) Graphene oxide/ferric hydroxide composites for efficient arsenate removal from drinking water. J Hazard Mater 182:162–168

    Article  Google Scholar 

  13. Liu Q, Shi J, Sun J, Wang T, Zeng L, Jiang G (2011) Graphene and graphene oxide sheets supported on silica as versatile and high-performance adsorbents for solid-phase extraction. Angew Chem Int Ed 123:6035–6039

    Article  Google Scholar 

  14. Chandra V, Park J, Chun Y, Lee JW, Hwang IC, Kim KS (2010) Water-dispersible magnetite-reduced graphene oxide composites for arsenic removal. ACS Nano 4:3979–3986

    Article  Google Scholar 

  15. Li C, Shi G (2012) Three-dimensional graphene architectures. Nanoscale 4:5549–5563

    Article  Google Scholar 

  16. Xu Y, Wu Q, Sun Y, Bai H, Shi G (2010) Three-dimensional self-assembly of graphene oxide and DNA into multifunctional hydrogels. ACS Nano 4:7358–7362

    Article  Google Scholar 

  17. Paul RK, Ghazinejad M, Penchev M, Lin J, Ozkan M, Ozkan CS (2010) Synthesis of a pillared graphene nanostructure: a counterpart of three-dimensional carbon architectures. Small 6:2309–2313

    Article  Google Scholar 

  18. Niu Z, Chen J, Hng HH, Ma J, Chen X (2012) A leavening strategy to prepare reduced graphene oxide foams. Adv Mater 24:4144–4150

    Article  Google Scholar 

  19. Li W, Gao S, Wu L, Qiu S, Guo Y, Geng X et al (2013) High-density three-dimension graphene macroscopic objects for high-capacity removal of heavy metal ions. Sci Rep 3:2125

    Google Scholar 

  20. Šafařík I, Ptáčková L, Šafaříková M (2001) Large-scale separation of magnetic bioaffinity adsorbents. Biotechnol Lett 23:1953–1956

    Article  Google Scholar 

  21. Sharda T, Rahaman M, Nukaya Y, Soga T, Jimbo T, Umeno M (2001) Structural and optical properties of diamond and nano-diamond films grown by microwave plasma chemical vapor deposition. Diam Relat Mater 10:561–567

    Article  Google Scholar 

  22. Sun J, Zhou S, Hou P, Yang Y, Weng J, Li X et al (2007) Synthesis and characterization of biocompatible Fe3O4 nanoparticles. J Biomed Mater Res A 80:333–341

    Article  Google Scholar 

  23. Yuan S, Zhou Z, Li G (2011) Structural evolution from mesoporous α-Fe2O3 to Fe3O4@ C and γ-Fe2O3 nanospheres and their lithium storage performances. CrystEngComm 13:4709–4713

    Article  Google Scholar 

  24. Stankovich S, Piner RD, Nguyen ST, Ruoff RS (2006) Synthesis and exfoliation of isocyanate-treated graphene oxide nanoplatelets. Carbon 44:3342–3347

    Article  Google Scholar 

  25. Yang X, Zhang X, Ma Y, Huang Y, Wang Y, Chen Y (2009) Superparamagnetic graphene oxide–Fe3O4 nanoparticles hybrid for controlled targeted drug carriers. J Mater Chem 19:2710–2714

    Article  Google Scholar 

  26. Grosvenor A, Kobe B, Biesinger M, McIntyre N (2004) Investigation of multiplet splitting of Fe 2p XPS spectra and bonding in iron compounds. Surf Interface Anal 36:1564–1574

    Article  Google Scholar 

  27. Fujii T, De Groot F, Sawatzky G, Voogt F, Hibma T, Okada K (1999) In situ XPS analysis of various iron oxide films grown by NO2-assisted molecular-beam epitaxy. Phys Rev B 59:3195

    Article  Google Scholar 

  28. Yang D, Velamakanni A, Bozoklu G, Park S, Stoller M, Piner RD et al (2009) Chemical analysis of graphene oxide films after heat and chemical treatments by X-ray photoelectron and micro-Raman spectroscopy. Carbon 47:145–152

    Article  Google Scholar 

  29. Ni ZH, Yu T, Lu YH, Wang YY, Feng YP, Shen ZX (2008) Uniaxial strain on graphene: Raman spectroscopy study and band-gap opening. ACS Nano 2:2301–2305

    Article  Google Scholar 

  30. Kudin KN, Ozbas B, Schniepp HC, Prud’Homme RK, Aksay IA, Car R (2008) Raman spectra of graphite oxide and functionalized graphene sheets. Nano Lett 8:36–41

    Article  Google Scholar 

  31. Brunauer S, Emmett PH, Teller E (1938) Adsorption of gases in multimolecular layers. J Am Chem Soc 60:309–319

    Article  Google Scholar 

  32. Gollavelli G, Chang CC, Ling YC (2013) Facile synthesis of smart magnetic graphene for safe drinking water: heavy metal removal and disinfection control. ACS Sustain Chem Eng 1:462–472

    Article  Google Scholar 

  33. Stankovich S, Dikin DA, Dommett GH, Kohlhaas KM, Zimney EJ, Stach EA et al (2006) Graphene-based composite materials. Nature 442:282–286

    Article  Google Scholar 

  34. Li D, Kaner RB (2008) Graphene-based materials. Nat Nanotechnol 3:101

    Article  Google Scholar 

  35. Barrett EP, Joyner LG, Halenda PP (1951) The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms. J Am Chem Soc 73:373–380

    Article  Google Scholar 

  36. Dai S, Burleigh M, Ju Y, Gao H, Lin J, Pennycook S et al (2000) Hierarchically imprinted sorbents for the separation of metal ions. J Am Chem Soc 122:992–993

    Article  Google Scholar 

  37. Ponder SM, Darab JG, Mallouk TE (2000) Remediation of Cr(VI) and Pb(II) aqueous solutions using supported, nanoscale zero-valent iron. Environ Sci Technol 34:2564–2569

    Article  Google Scholar 

  38. Langmuir I (1918) The adsorption of gases on plane surfaces of glass, mica and platinum. J Am Chem Soc 40:1361–1403

    Article  Google Scholar 

  39. Freundlich H (1906) Over the adsorption in solution. J Phys Chem 57:292

    Google Scholar 

  40. WooáLee J, BináKim S (2011) Enhanced Cr(VI) removal using iron nanoparticle decorated graphene. Nanoscale 3:3583–3585

    Article  Google Scholar 

  41. Liu M, Zhang H, Zhang X, Deng Y, Liu W, Zhan H (2001) Removal and recovery of chromium(III) from aqueous solutions by a spheroidal cellulose adsorbent. Water Environ Res 73:322–328

    Article  Google Scholar 

  42. Cao CY, Qu J, Yan WS, Zhu JF, Wu ZY, Song WG (2012) Low-Cost Synthesis of flowerlike α-Fe2O3 nanostructures for heavy metal ion removal: adsorption property and mechanism. Langmuir 28:4573–4579

    Article  Google Scholar 

  43. Cao CY, Cui Z-M, Chen CQ, Song WG, Cai W (2010) Ceria hollow nanospheres produced by a template-free microwave-assisted hydrothermal method for heavy metal ion removal and catalysis. J Phys Chem C 114:9865–9870

    Article  Google Scholar 

  44. Cimino G, Passerini A, Toscano G (2000) Removal of toxic cations and Cr(VI) from aqueous solution by hazelnut shell. Water Res 34:2955–2962

    Article  Google Scholar 

  45. Peterson ML, Brown GE, Parks GA, Stein CL (1997) Differential redox and sorption of Cr(III/VI) on natural silicate and oxide minerals: eXAFS and XANES results. Geochim Cosmochim Ac 61:3399–3412

    Article  Google Scholar 

  46. Cao JS, Zhang WX (2006) Stabilization of chromium ore processing residue (COPR) with nanoscale iron particles. J Hazard Mater 132:213–219

    Article  Google Scholar 

  47. Li S, Lu X, Xue Y, Lei J, Zheng T, Wang C (2012) Fabrication of polypyrrole/graphene oxide composite nanosheets and their applications for Cr(VI) removal in aqueous solution. PLoS One 7:43328

    Article  Google Scholar 

  48. Ai Z, Cheng Y, Zhang L, Qiu J (2008) Efficient removal of Cr(VI) from aqueous solution with Fe@ Fe2O3 core–shell nanowires. Environ Sci Technol 42:6955–6960

    Article  Google Scholar 

  49. Afkhami A, Saber-Tehrani M, Bagheri H (2010) Simultaneous removal of heavy-metal ions in wastewater samples using nano-alumina modified with 2,4-dinitrophenylhydrazine. J Hazard Mater 181:836–844

    Article  Google Scholar 

  50. Zhao YG, Shen HY, Pan SD, Hu MQ, Xia QH (2010) Preparation and characterization of amino-functionalized nano-Fe3O4 magnetic polymer adsorbents for removal of chromium (VI) ions. J Mater Sci 45:5291–5301

    Article  Google Scholar 

  51. Lee SM, Kim WG, Laldawngliana C, Tiwari D (2010) Removal behavior of surface modified sand for Cd(II) and Cr(VI) from aqueous solutions. J Chem Eng Data 55:3089–3094

    Article  Google Scholar 

  52. Sharma D, Forster C (1994) A preliminary examination into the adsorption of hexavalent chromium using low-cost adsorbents. Bioresour Technol 47:257–264

    Article  Google Scholar 

  53. Zhong LS, Hu JS, Cao AM, Liu Q, Song WG, Wan LJ (2007) 3D flowerlike ceria micro/nanocomposite structure and its application for water treatment and CO removal. Chem Mater 19:1648–1655

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Long Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lei, Y., Chen, F., Luo, Y. et al. Three-dimensional magnetic graphene oxide foam/Fe3O4 nanocomposite as an efficient absorbent for Cr(VI) removal. J Mater Sci 49, 4236–4245 (2014). https://doi.org/10.1007/s10853-014-8118-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-014-8118-2

Keywords

Navigation