Skip to main content
Log in

Sorption of strontium ions from aqueous solutions by oxidized multiwall carbon nanotubes

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Multiwall carbon nanotubes (MWCNTs) oxidized by nitric acid solution were used to investigate the adsorption behavior of strontium from aqueous solutions similar to the nuclear waste media. The physical properties of both as produced and oxidized MWCNTs were studied by Boehm’s titration method and nitrogen adsorption/desorption. The results showed that the surface properties of MWCNTs such as specific surface area, functional groups and the total number of acid sites were improved after oxidation. Furthermore, the effect of solution conditions such as initial concentration of strontium(II), pH, ionic strength, MWCNT concentration and contact time were studied at room temperature. The results of this study showed that the adsorption of strontium(II) was significantly influenced by the pH value and the solution ionic strength. According to the Langmuir model, the maximum adsorption capacities of strontium(II) onto the as produced and oxidized MWCNTs were obtained as 1.62 and 6.62 mg g−1, respectively. The contact time to reach equilibrium was 100 min. The good adsorption of strontium(II) on oxidized MWCNTs at the lower ionic strength, the relatively high pH and the short equilibrium time indicate that the oxidized MWCNTs have great potential applications in the field of the environmental protection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58

    Article  CAS  Google Scholar 

  2. Iijima S, Ichihashi T (1993) Single-shell carbon nanotubes of 1 nm diameter. Nature 363:603–605

    Article  CAS  Google Scholar 

  3. Chen CM, Chen M, Peng YWW, Lin CH, Chang LW, Chen CF (2005) Microwave digestion and acidic treatment procedures for the purification of multi-walled carbon nanotubes. Diam Relat Mater 14:798–803

    Article  CAS  Google Scholar 

  4. Merkoci A (2006) Carbon nanotubes in analytical sciences. Microchim Acta 152:157–174

    Article  CAS  Google Scholar 

  5. Yang K, Wang X, Zhu L, Xing B (2006) Competitive sorption of pyrene, phenanthrene, and naphthalene on multi walled carbon nanotubes. Environ Sci Technol 40:5804–5810

    Article  CAS  Google Scholar 

  6. Kombarakkaran J, Clewett CFM, Pietra T (2007) Ammonia adsorption on multiwalled carbon nanotubes. Chem Phys Lett 441:282–285

    Article  CAS  Google Scholar 

  7. Du D, Wang M, Zhang J, Cai J, Tu H, Zhang A (2008) Application of multiwalled carbon nanotubes for solid-phase extraction of organophosphate pesticide. Electrochem Commun 10:85–89

    Article  CAS  Google Scholar 

  8. Chin CJM, Shih LC, Tsai HJ, Liu TK (2007) Adsorption of o-xylene and p-xylene from water by carbon nanotubes. Carbon 45:1254–1260

    Article  CAS  Google Scholar 

  9. Li YH, Ding J, Luan Z, Di Z, Zhu Y, Xu C (2003) Competitive adsorption of Pb2+, Cu2+, Cd2+ ions from aqueous solutions by multiwalled carbon nanotubes. Carbon 41:2787–2792

    Article  CAS  Google Scholar 

  10. Tuzen M, Saygi KO, Soylak M (2008) Solid phase extraction of heavy metal ions in environmental samples on multi walled carbon nanotubes. J Hazard Mater 152:632–639

    Article  CAS  Google Scholar 

  11. Yang S, Li J, Shao D, Hu J, Wang K (2009) Adsorption of nickel(II) on oxidized multiwall carbon nanotubes. J Hazard Mater 166:109–116

    Article  CAS  Google Scholar 

  12. Xu D, Tan X, Chen C, Wang X (2008) Removal of lead(II) from aqueous solution by oxidized multi walled carbon nanotubes. J Hazard Mater 154:407–416

    Article  CAS  Google Scholar 

  13. Wu CH (2007) Studies of the equilibrium and thermodynamics of the adsorption of Cu2+ onto As-produced and modified carbon nanotubes. J Colloid Interface Sci 311:338–346

    Article  CAS  Google Scholar 

  14. Tuzen M, Soylak M (2007) Multiwall carbon nanotubes for speciation of chromium in environmental samples. J Hazard Mater 147:219–225

    Article  CAS  Google Scholar 

  15. Lu C, Chiu H, Liu C (2006) Removal of zinc(II) from aqueous solution by purified carbon nanotubes: kinetics and equilibrium studies. Ind Eng Chem Res 45:2850–2855

    Article  CAS  Google Scholar 

  16. Wang XK, Chen CL, Hu WP, Ding AP, Xu D, Zhou X (2005) Sorption of Amersium-243 to multi-wall carbon nanotubes. Environ Sci Technol 39:2856–2860

    Article  CAS  Google Scholar 

  17. Chen CL, Li XL, Wang XK (2007) Application of oxidized multiwall carbon nanotubes for thorium(IV) adsorption. Radiochim Acta 95:261–266

    Article  CAS  Google Scholar 

  18. Tan XL, Xu D, Chen CL, Wang XK, Hu WP (2008) Adsorption and kinetic desorption study of 152+154Eu(III) on multiwall carbon nanotubes from aqueous solution by using chelating resin and XPS methods. Radiochim Acta 96:23–30

    Article  CAS  Google Scholar 

  19. Elvers B, Hawkins B, Schulz S (1990) Radionuclides; Ullmann’s encyclopedia of industrial chemistry. VCH Publishers, New York

    Google Scholar 

  20. Jakopic R, Benedik L (2005) Tracer studies on Sr resin and determination of 90Sr in environmental samples. Acta Chim Solv 52:297–302

    CAS  Google Scholar 

  21. Sylvester P, Behrens EA, Graziano GM, Clearfield A (1999) An assessment of inorganic ion-exchange materials for the removal of strontium from simulated Hanford tank wastes. Sep Sci Technol 34:1981–1992

    Article  CAS  Google Scholar 

  22. Draye M, Buzit GL, Foos J, Guy A, Leclere B, Doutreluingne P, Lemaire M (1997) A recovery process of strontium from acidic nuclear waste streams. Sep Sci Technol 32:1725–1737

    Article  CAS  Google Scholar 

  23. Wood DJ, Law JD (1997) Evaluation of the SREX solvent extraction process for the removal of 90Sr and hazardous metals from acidic nuclear waste solutions containing high concentrations of interfering alkali metal ions. Sep Sci Technol 32:241–253

    Article  CAS  Google Scholar 

  24. Veshev SA, Alekseev SG, Dukhanin AS (1996) Migration of radionuclides in soil under a static electric field. Geokhimiya 34:908–911

    Google Scholar 

  25. Llobet JM, Colomina MT, Domingo JL, Corbella J (1993) Evaluation of potential strontium chelators in an octanol-water system. J Corbella Health Phys 65:541–545

    Article  CAS  Google Scholar 

  26. Boehm HP (1994) Some aspects of the surface chemistry of carbon blacks and other carbons. Carbon 32:759–766

    Article  CAS  Google Scholar 

  27. Atkins PW (1978) Physical chemistry. Oxford University Press, Oxford

    Google Scholar 

  28. Hua J, Chen C, Zhub X, Wang X (2009) Removal of chromium from aqueous solution by using oxidized multiwalled carbon nanotubes. J Hazard Mater 162:1542–1550

    Article  CAS  Google Scholar 

  29. Kiselev AV (1968) Adsorption properties of hydrophobic surface. J Colloid Interface Sci 28:430–442

    Article  CAS  Google Scholar 

  30. Lu C, Liu C, Rao GP (2008) Comparisons of sorbent cost for the removal of Ni2+ from aqueous solution by carbon nanotubes and granular activated carbon. J Hazard Mater 151:239–246

    Article  CAS  Google Scholar 

  31. Di ZC, Ding J, Peng XJ, Li YH (2006) Chromium adsorption by aligned carbon nanotubes supported ceria nanoparticles. Chemosphere 62:861–865

    Article  CAS  Google Scholar 

  32. Chen CL, Wang XK (2006) Adsorption of Ni(II) from aqueous solution using oxidized multiwalled carbon nanotubes. Ind Eng Chem Res 45:9144–9149

    Article  CAS  Google Scholar 

  33. Ovejero G, Sotelo JL, Romero MD, Rodrıguez A, Ocana MA, Rodriıguez G (2006) Multiwalled carbon nanotubes for liquid-phase oxidation. Functionalization, characterization and catalytic activity. Ind Eng Chem Res 45:2206–2212

    Article  CAS  Google Scholar 

  34. Cole T, Bidoglio G, Soupioni M, Gorman M, Gibson N (2000) Diffusion mechanisms of multiple strontium species in clay. Geochim Cosmochim Acta 64:385–396

    Article  CAS  Google Scholar 

  35. Reddad Z, Gerente C, Andres Y, Cloirec LP (2002) Adsorption of several metal ions onto a low-cost biosorbent: kinetic and equilibrium studies. Environ Sci Technol 36:2067–2073

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. D. Huang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yavari, R., Huang, Y.D. & Mostofizadeh, A. Sorption of strontium ions from aqueous solutions by oxidized multiwall carbon nanotubes. J Radioanal Nucl Chem 285, 703–710 (2010). https://doi.org/10.1007/s10967-010-0600-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-010-0600-y

Keywords

Navigation