Skip to main content
Log in

Composite of Natural Polymers and Their Adsorbent Properties on the Dyes and Heavy Metal Ions

  • Review
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Natural polymers such as chitosan, chitin, cellulose, alginate, pectin, and lignin produced by renewable organic resources are regarded as greener, sustainable, and eco-friendly materials. On account of their superior structural characteristics, abundant availability, nontoxicity, and ease of modification these naturel polymers are being used in the removal of dyes and heavy metal ions which can be carcinogenic, mutagenic, allergenic and toxic. However, to remove these contaminants, there are still challenges as pure natural polymers suffer from low surface area, low recovery and more solubility in water. Chemical modifications that lead to natural polymer composite formations have attracted much interest since the feauters they posses such as higher surface areas, porosities, reactivities as well as less solubility in water. In other words, natural polymer composites have better adsorption capacities towards dyes and heavy metal ions compared to the pure natural polymers. This review summarizes the appropriate literatures corresponding to the studies which include the applications of natural polymer composites for the removal of dyes and heavy metal ions in the last few years. A series of low cost natural polymer composites have been reviewed for their adsorption performance, adsorption mechanism, reusable feature, and the experimental conditions such as solution pH, contact time, dose amount, temperature.

Graphic Abstract

The NH2, COO, OH, and NHCOOCH3 groups on polysaccharide composites behaved as effective sites for dyes and heavy metal capture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data Availability

All data generated or analysed during this study are included in this published article.

References

  1. Ngah WW, Teong LC, Hanafiah MM (2011) Adsorption of dyes and heavy metal ions by chitosan composites: a review. Carbohydr Polym 83:1446–1456

    Article  CAS  Google Scholar 

  2. Kubra KT, Salman MS, Znad H, Hasan MN (2021) Efficient encapsulation of toxic dye from wastewater using biodegradable polymeric adsorbent. J Mol Liq 329:115541

    Article  CAS  Google Scholar 

  3. Yeamin MB, Islam MM, Chowdhury AN, Awual MR (2021) Efficient encapsulation of toxic dyes from wastewater using several biodegradable natural polymers and their composites. J Clean Prod 291:125920

    Article  CAS  Google Scholar 

  4. Kausar A, Shahzad R, Iqbal J, Muhammad N, Ibrahim SM, Iqbal M (2020) Development of new organic-inorganic, hybrid bionanocomposite from cellulose and clay for enhanced removal of drimarine yellow HF-3GL dye. Int J Biol Macromol 149:1059–1071

    Article  CAS  PubMed  Google Scholar 

  5. Awual MR (2019) Novel ligand functionalized composite material for efficient copper (II) capturing from wastewater sample. Compos Part B 172:387–396

    Article  CAS  Google Scholar 

  6. Pawar RR, Ingole PG, Lee SM (2020) Use of activated bentonite-alginate composite beads for efficient removal of toxic Cu2+ and Pb2+ ions from aquatic environment. Int J Biol Macromol 164:3145–3154

    Article  CAS  PubMed  Google Scholar 

  7. Ranjbar D, Raeiszadeh M, Lewis L, MacLachlan MJ, Hatzikiriakos SG (2020) Adsorptive removal of congo red by surfactant modified cellulose nanocrystals: a kinetic, equilibrium, and mechanistic investigation. Cellulose 27:3211–3232

    Article  CAS  Google Scholar 

  8. Awual MR, Hasan MM (2019) A ligand based innovative composite material for selective lead (II) capturing from wastewater. J Mol Liq 294:111679

    Article  CAS  Google Scholar 

  9. Awual MR (2019) A facile composite material for enhanced cadmium (II) ion capturing from wastewater. J Environ Chem Eng 7:103378

    Article  CAS  Google Scholar 

  10. da Costa TB, da Silva MGC, Vieira MGA (2020) Development of a natural polymeric bioadsorbent based on sericin, alginate and poly (vinyl alcohol) for the recovery of ytterbium from aqueous solutions. J Clean Prod 279:123555

    Article  CAS  Google Scholar 

  11. Xie J, Feng N, Wang R, Guo Z, Dong H, Cui H, Liu X (2020) A reusable biosorbent using Ca-alginate immobilized providencia vermicola for Pd (II) recovery from acidic solution. Water Air Soil Pollut 231:1–12

    Article  CAS  Google Scholar 

  12. Çatlıoğlu FN, Akay S, Gözmen B, Turunc E, Anastopoulos I, Kayan B, Kalderis D (2020) Fe-modified hydrochar from orange peel as adsorbent of food colorant brilliant black: process optimization and kinetic studies. Int J Environ Sci Technol 17:1975–1990

    Article  CAS  Google Scholar 

  13. Mansur NF, Hanafiah MAKM, Ismail M (2020) Pb (II) adsorption onto urea treated leucaena leucocephala leaf powder: characterization, kinetics and isotherm studies. Nat Environ Pollut Technol 19:311–318

    CAS  Google Scholar 

  14. Mondal B, Bairagi D, Nandi N, Hansda B, Das KS, Edwards-Gayle CJ, Banerjee A et al (2020) Peptide-based gel in environmental remediation: removal of toxic organic dyes and hazardous Pb2+ and Cd2+ ions from wastewater and oil spill recovery. Langmuir 36:12942–12953

    Article  CAS  PubMed  Google Scholar 

  15. Li H, Vardanyan A, Charnay C, Raehm L, Seisenbaeva GA, Pleixats R, Durand JO (2020) Synthesis of cyclen-functionalized ethenylene-based periodic mesoporous organosilica nanoparticles and metal-ion adsorption studies. ChemNanoMat 6:1625–1634

    Article  CAS  Google Scholar 

  16. Hasan MM, Shenashen MA, Hasan MN, Znad H, Salman MS, Awual MR (2021) Natural biodegradable polymeric bioadsorbents for efficient cationic dye encapsulation from wastewater. J Mol Liq 323:114587

    Article  CAS  Google Scholar 

  17. Kubra KT, Salman MS, Hasan MN (2021) Enhanced toxic dye removal from wastewater using biodegradable polymeric natural adsorbent. J Mol Liq 328:115468

    Article  CAS  Google Scholar 

  18. Wang Y, Ge S, Cheng W, Hu Z, Shao Q, Wang X, Guo Z et al (2020) Microwave hydrothermally synthesized metal-organic framework-5 derived C-doped ZnO with enhanced photocatalytic degradation of rhodamine B. Langmuir 36:9658–9667

    Article  CAS  PubMed  Google Scholar 

  19. Kumar R, Umar A, Kumar R, Chauhan MS, Al-Hadeethi Y (2020) ZnO–SnO2 nanocubes for fluorescence sensing and dye degradation applications. Ceram Int 47:6201–6210

    Article  CAS  Google Scholar 

  20. Sun Y, Shah KJ, Sun W, Zheng H (2019) Performance evaluation of chitosan-based flocculants with good pH resistance and high heavy metals removal capacity. Sep Purif Technol 215:208–216

    Article  CAS  Google Scholar 

  21. Bora AJ, Dutta RK (2019) Removal of metals (Pb, Cd, Cu, Cr, Ni, and Co) from drinking water by oxidation-coagulation-absorption at optimized pH. J Water Process Eng 31:100839

    Article  Google Scholar 

  22. Ibrahim Y, Abdulkarem E, Naddeo V, Banat F, Hasan SW (2019) Synthesis of super hydrophilic cellulose-alpha zirconium phosphate ion exchange membrane via surface coating for the removal of heavy metals from wastewater. Sci Total Environ 690:167–180

    Article  CAS  PubMed  Google Scholar 

  23. Xu J, Liu C, Hsu PC, Zhao J, Wu T, Tang J, Cui Y et al (2019) Remediation of heavy metal contaminated soil by asymmetrical alternating current electrochemistry. Nat commun 10:1–8

    CAS  Google Scholar 

  24. Bashir A, Malik LA, Ahad S, Manzoor T, Bhat MA, Dar GN, Pandith AH (2019) Removal of heavy metal ions from aqueous system by ion-exchange and biosorption methods. Environ Chem Lett 17:729–754

    Article  CAS  Google Scholar 

  25. Lindholm-Lehto PC (2019) Biosorption of heavy metals by lignocellulosic biomass and chemical analysis. BioResources 14:4952–4995

    Google Scholar 

  26. Kayan A (2019) Inorganic-organic hybrid materials and their adsorbent properties. Adv Compos Hybrid Mater 2:34–45

    Article  CAS  Google Scholar 

  27. Awual MR, Hasan MM, Islam A, Rahman MM, Asiri AM, Khaleque MA, Sheikh MC (2019) Offering an innovative composited material for effective lead (II) monitoring and removal from polluted water. J Clean Prod 231:214–223

    Article  CAS  Google Scholar 

  28. Hussain MS, Musharraf SG, Bhanger MI, Malik MI (2020) Salicylaldehyde derivative of nano-chitosan as an efficient adsorbent for lead (II), copper (II), and cadmium (II) ions. Int J Biol Macromol 147:643–652

    Article  CAS  PubMed  Google Scholar 

  29. Cerrahoğlu E, Kayan A, Bingöl D (2017) New inorganic–organic hybrid materials and their oxides for removal of heavy metal ions: response surface methodology approach. J Inorg Organomet Polym Mater 27:427–435

    Article  CAS  Google Scholar 

  30. Awual MR, Hasan MM, Islam A, Asiri AM, Rahman MM (2020) Optimization of an innovative composited material for effective monitoring and removal of cobalt (II) from wastewater. J Mol Liq 298:112035

    Article  CAS  Google Scholar 

  31. Kaur K, Jindal R, Tanwar R (2019) Chitosan–gelatin@ tin (IV) tungstatophosphate nanocomposite ion exchanger: synthesis, characterization and applications in environmental remediation. J Polym Environ 27:19–36

    Article  CAS  Google Scholar 

  32. Bahrudin NN, Nawi MA, Sabar S (2019) Immobilized chitosan-montmorillonite composite adsorbent and its photocatalytic regeneration for the removal of methyl orange. React Kinet Mech Catal 126:1135–1153

    Article  CAS  Google Scholar 

  33. Privar Y, Shashura D, Pestov A, Ziatdinov A, Azarova Y, Bratskaya S (2020) Effect of regioselectivity of chitosan carboxyalkylation and type of cross-linking on the metal-chelate sorption properties toward ciprofloxacin. Reactiv Funct Polym 150:104536

    Article  CAS  Google Scholar 

  34. Zhao GB, Hao YF, He BQ, Song YF, Ji YH, Zhang YH, Li JX et al (2020) A chitosan-separation-layer nanofiltration membrane prepared through homogeneous hybrid and copper ion enhancement. Sep Purif Technol 234:116084

    Article  CAS  Google Scholar 

  35. Li SS, Wang XL, An QD, Xiao ZY, Zhai SR, Cui L, Li ZC (2020) Upon designing carboxyl methylcellulose and chitosan-derived nanostructured sorbents for efficient removal of Cd (II) and Cr (VI) from water. Int J Biol Macromol 143:640–650

    Article  CAS  PubMed  Google Scholar 

  36. Mokhtar A, Abdelkrim S, Djelad A, Sardi A, Boukoussa B, Sassi M, Bengueddach A (2020) Adsorption behavior of cationic and anionic dyes on magadiite-chitosan composite beads. Carbohydr Polym 229:115399

    Article  CAS  PubMed  Google Scholar 

  37. Teimouri A, Ghased N, Nasab SG, Habibollahi S (2019) Statistical design of experiment as a tool for optimization of methylene blue sorption on CS/MCM-41/nano-gamma alumina as a novel and environmentally friendly adsorbent: isotherm and kinetic studies. Desalin Water Treat 139:327–341

    Article  CAS  Google Scholar 

  38. Abd Malek NN, Jawad AH, Abdulhameed AS, Ismail K, Hameed BH (2020) New magnetic Schiff’s base-chitosan-glyoxal/fly ash/Fe3O4 biocomposite for the removal of anionic azo dye: an optimized process. Int J Biol Macromol 146:530–539

    Article  CAS  Google Scholar 

  39. Noreen S, Bhatti HN, Iqbal M, Hussain F, Sarim FM (2020) Chitosan, starch, polyaniline and polypyrrole biocomposite with sugarcane bagasse for the efficient removal of acid black dye. Int J Biol Macromol 147:439–452

    Article  CAS  PubMed  Google Scholar 

  40. El-Kousy SM, El-Shorbagy HG, Abd El-Ghaffar MA (2020) Chitosan/montmorillonite composites for fast removal of methylene blue from aqueous solutions. Mater Chem Phys 254:123236

    Article  CAS  Google Scholar 

  41. Jawad AH, Mubarak NSA, Abdulhameed AS (2020) Hybrid crosslinked chitosan-epichlorohydrin/TiO2 nanocomposite for reactive red 120 dye adsorption: kinetic, isotherm, thermodynamic, and mechanism study. J Polym Environ 28:624–637

    Article  CAS  Google Scholar 

  42. Salih SS, Mahdi A, Kadhom M, Ghosh TK (2019) Competitive adsorption of As (III) and As (V) onto chitosan/diatomaceous earth adsorbent. J Environ Chem Eng 7:103407

    Article  CAS  Google Scholar 

  43. He N, Li L, Wang P, Zhang J, Chen J, Zhao J (2019) Dioxide/chitosan/poly(lactide-co-caprolactone) composite membrane with efficient Cu (II) adsorption. Colloids Surf A 580:123687

    Article  CAS  Google Scholar 

  44. Farokhia M, Parvareha A, Moravejia MK (2019) Adsorption optimization of Cr (VI) and Co (II) onto the synthesized chitosan/cerium oxide/iron oxide nano-composite in water system using RSM according to CCD method. Desalin Water Treat 143:240–255

    Article  CAS  Google Scholar 

  45. Bavasso I, Vuppala S, Cianfrini C (2019) Cr (VI) removal by chitosan-magnetite nano-composite in aqueous solution. Chem Eng Trans 73:163–168

    Google Scholar 

  46. Alakhras F, Al-Shahrani H, Al-Abbad E, Al-Rimawi F, Ouerfelli N (2018) Removal of Pb (II) metal ions from aqueous solutions using chitosan-vanillin derivatives of chelating polymers. Pol J Environ Stud 28:1523–1534

    Article  Google Scholar 

  47. Bhatt R, Ageetha V, Rathod SB, Padmaja P (2019) Self-assembled chitosan-zirconium phosphate nanostructures for adsorption of chromium and degradation of dyes. Carbohydr Polym 208:441–450

    Article  CAS  PubMed  Google Scholar 

  48. Heiba HF, Taha AA, Mostafa AR, Mohamed LA, Fahmy MA (2020) Preparation and characterization of novel mesoporous chitin blended MoO3-montmorillonite nanocomposite for Cu (II) and Pb (II) immobilization. Int J Biol Macromol 152:554–566

    Article  CAS  PubMed  Google Scholar 

  49. Li Y, Guo C, Shi R, Zhang H, Gong L, Dai L (2019) Chitosan/nanofibrillated cellulose aerogel with highly oriented microchannel structure for rapid removal of Pb (II) ions from aqueous solution. Carbohydr Polym 223:115048

    Article  CAS  PubMed  Google Scholar 

  50. Rahim M, Haris MRHM (2019) Chromium (VI) removal from neutral aqueous media using banana trunk fibers (BTF)-reinforced chitosan-based film, in comparison with BTF, chitosan, chitin and activated carbon. SN Appl Sci 1:1180

    Article  CAS  Google Scholar 

  51. Phan DN, Lee H, Huang B, Mukai Y, Kim IS (2019) Fabrication of electrospun chitosan/cellulose nanofibers having adsorption property with enhanced mechanical property. Cellulose 26:1781–1793

    Article  CAS  Google Scholar 

  52. Atangana E (2019) Adsorption of Zn (II) and Pb (II) ions from aqueous solution using chitosan cross-linked formaldehyde adsorbent to protect the environment. J Polym Environ 27:2281–2291

    Article  CAS  Google Scholar 

  53. Kayan GO, Kayan A (2021) Inorganic-organic hybrid materials of zirconium and aluminum and their usage in the removal of methylene blue. J Inorg Organomet Polym Mater. https://doi.org/10.1007/s10904-021-01961-y

    Article  Google Scholar 

  54. Zhang YJ, Xue JQ, Li F, Dai JZ (2019) Preparation of polypyrrole/chitosan/carbon nanotube composite nano-electrode and application to capacitive deionization process for removing Cu2+. Chem Eng Process 139:121–129

    Article  CAS  Google Scholar 

  55. Zhang C, Dai Y, Wu Y, Lu G, Cao Z, Cheng J, Wang Z (2020) Facile preparation of polyacrylamide/chitosan/Fe3O4 composite hydrogels for effective removal of methylene blue from aqueous solution. Carbohydr Polym 234:115882

    Article  CAS  PubMed  Google Scholar 

  56. Alinezhad H, Zabihi M, Kahfroushan D (2020) Design and fabrication the novel polymeric magnetic boehmite nanocomposite (boehmite@ Fe3O4@ PLA@ SiO2) for the remarkable competitive adsorption of methylene blue and mercury ions. J Phys Chem Solids 144:109515

    Article  CAS  Google Scholar 

  57. Sabar S, Aziz HA, Yusof NH, Subramaniam S, Foo KY, Wilson LD, Lee HK (2020) Preparation of sulfonated chitosan for enhanced adsorption of methylene blue from aqueous solution. React Funct Polym 151:104584

    Article  CAS  Google Scholar 

  58. Le TTN, Le VT, Dao MU, Nguyen QV, Vu TT, Nguyen MH, Le HS et al (2019) Preparation of magnetic graphene oxide/chitosan composite beads for effective removal of heavy metals and dyes from aqueous solutions. Chem Eng Commun 206:1337–1352

    Article  CAS  Google Scholar 

  59. Zeng H, Wang L, Zhang D, Wang F, Sharma VK, Wang C (2019) Amido-functionalized carboxymethyl chitosan/montmorillonite composite for highly efficient and cost-effective mercury removal from aqueous solution. J Colloid Interface Sci 554:479–487

    Article  CAS  PubMed  Google Scholar 

  60. Qiao L, Zhao L, Du K (2020) Construction of hierarchically porous chitin microspheres via a novel dual-template strategy for rapid and high-capacity removal of heavy metal ions. Chem Eng J 393:124818

    Article  CAS  Google Scholar 

  61. Yousefi N, Jones M, Bismarck A, Mautner A (2020) Fungal chitin-glucan nanopapers with heavy metal adsorption properties for ultrafiltration of organic solvents and water. Carbohydr Polym 253:117273

    Article  PubMed  CAS  Google Scholar 

  62. Mamah SC, Goh PS, Ismail AF, Amin MAM, Ahmad NA, Suzaimi ND, Raji YO (2020) Facile preparation of palygorskite/chitin nanofibers hybrids nanomaterial with remarkable adsorption capacity. Mater Sci Eng 262:114725

    Article  CAS  Google Scholar 

  63. Zhang T, Li Z, Wang W, Wang Y, Gao B, Wang Z (2019) Enhanced antifouling and antimicrobial thin film nanocomposite membranes with incorporation of Palygorskite/titanium dioxide hybrid material. J Colloid Interface Sci 537:1–10

    Article  CAS  PubMed  Google Scholar 

  64. Ou X, Yang X, Zheng J, Liu M (2019) Free-standing graphene oxide-chitin nanocrystal composite membrane for dye adsorption and oil/water separation. ACS Sustain Chem Eng 7:13379–13390

    Article  CAS  Google Scholar 

  65. Wu J, Cheng X, Yang G (2019) Preparation of nanochitin-contained magnetic chitosan microfibers via continuous injection gelation method for removal of Ni (II) ion from aqueous solution. Int J Biol Macromol 125:404–413

    Article  CAS  PubMed  Google Scholar 

  66. Cerrahoğlu E, Kayan A, Bingöl D (2018) Multivariate optimization for removal of some heavy metals using novel inorganic–organic hybrid and calcined materials. Sep Sci Technol 53:2563–2572

    Article  CAS  Google Scholar 

  67. Nasrollahzadeh M, Sajjadi M, Iravani S, Varma RS (2020) Starch, cellulose, pectin, gum, alginate, chitin and chitosan derived (nano) materials for sustainable water treatment: a review. Carbohydr Polym Doı. https://doi.org/10.1016/j.carbpol.2020.116986

    Article  Google Scholar 

  68. Somsesta N, Sricharoenchaikul V, Aht-Ong D (2020) Adsorption removal of methylene blue onto activated carbon/cellulose biocomposite films: equilibrium and kinetic studies. Mater Chem Phys 240:122221

    Article  CAS  Google Scholar 

  69. Bhatti HN, Safa Y, Yakout SM, Shair OH, Iqbal M, Nazir A (2020) Efficient removal of dyes using carboxymethyl cellulose/alginate/polyvinyl alcohol/rice husk composite: adsorption/desorption, kinetics and recycling studies. Int J Biol Macromol 150:861–870

    Article  CAS  PubMed  Google Scholar 

  70. Sharma G, Kumar A, Sharma S, Naushad M, Ghfar AA, Ala’a H, Stadler FJ et al (2020) Carboxymethyl cellulose structured nano-adsorbent for removal of methyl violet from aqueous solution: isotherm and kinetic analyses. Cellulose 27:1–15

    Article  CAS  Google Scholar 

  71. Liu J, Chen TW, Yang YL, Bai ZC, Xia LR, Wang M, Li L et al (2020) Removal of heavy metal ions and anionic dyes from aqueous solutions using amide-functionalized cellulose-based adsorbents. Carbohydr Polym 230:115619

    Article  CAS  PubMed  Google Scholar 

  72. Ma X, Lou Y, Chen XB, Shi Z, Xu Y (2019) Multifunctional flexible composite aerogels constructed through in-situ growth of metal-organic framework nanoparticles on bacterial cellulose. Chem Eng J 356:227–235

    Article  CAS  Google Scholar 

  73. Gholami Derami H, Jiang Q, Ghim D, Cao S, Chandar YJ, Morrissey JJ, Singamaneni S et al (2019) A robust and scalable polydopamine/bacterial nanocellulose hybrid membrane for efficient wastewater treatment. ACS Appl Nano Mater 2:1092–1101

    Article  CAS  Google Scholar 

  74. Zhu Y, Liu Y, Jin K, Pang Z (2019) Polysaccharide nanoparticles for cancer drug targeting. Polysaccharide carriers for drug delivery. Elsevier, Amsterdam, pp 365–396

    Chapter  Google Scholar 

  75. Meena S, Tripathi AD, Ts RL (2020) Optimization and characterization of alginic acid synthesized from a novel strain of Pseudomonas stutzeri. Biotechnol Rep 27:e00517

    Article  Google Scholar 

  76. Xu C, Nasrollahzadeh M, Sajjadi M, Maham M, Luque R, Puente-Santiago AR (2019) Benign-by-design nature-inspired nanosystems in biofuels production and catalytic applications. Renew Sust Energ Rev 112:195–252

    Article  CAS  Google Scholar 

  77. Liu C, Ye J, Lin Y, Wu J, Price GW, Burton D, Wang Y (2020) Removal of cadmium (II) using water hyacinth (Eichhornia crassipes) biochar alginate beads in aqueous solutions. Environ Pollut 264:114785

    Article  CAS  PubMed  Google Scholar 

  78. Godiya CB, Liang M, Sayed SM, Li D, Lu X (2019) Novel alginate/polyethyleneimine hydrogel adsorbent for cascaded removal and utilization of Cu2+ and Pb2+ ions. J Environ Manage 232:829–841

    Article  CAS  PubMed  Google Scholar 

  79. Mohammadi R, Azadmehr A, Maghsoudi A (2019) Fabrication of the alginate-combusted coal gangue composite for simultaneous and effective adsorption of Zn (II) and Mn (II). J Environ Chem Eng 7:103494

    Article  CAS  Google Scholar 

  80. Javanbakht V, Shafiei R (2020) Preparation and performance of alginate/basil seed mucilage biocomposite for removal of eriochrome black T dye from aqueous solution. Int J Biol Macromol 152:990–1001

    Article  PubMed  CAS  Google Scholar 

  81. Kulal P, Badalamoole V (2020) Magnetite nanoparticle embedded Pectin-graft-poly (N-hydroxyethylacrylamide) hydrogel: EValuation as adsorbent for dyes and heavy metal ions from waste water. Int J Biol Macromol 156:1408–1417

    Article  CAS  PubMed  Google Scholar 

  82. Kaushal S, Kaur N, Kaur M, Singh PP (2020) Dual-responsive pectin/graphene oxide (Pc/GO) nano-composite as an efficient adsorbent for Cr (III) ions and photocatalyst for degradation of organic dyes in waste water. J Photochem Photobiol A Chem 403:112841

    Article  CAS  Google Scholar 

  83. Moslemi M (2020) Reviewing the recent advances in application of pectin for technical and health promotion purposes: from laboratory to market. Carbohydr Polym 117324

  84. Lessa EF, Medina AL, Ribeiro AS, Fajardo AR (2020) Removal of multi-metals from water using reusable pectin/cellulose microfibers composite beads. Arab J Chem 13:709–720

    Article  CAS  Google Scholar 

  85. Mirza A, Ahmad R (2020) An efficient sequestration of toxic crystal violet dye from aqueous solution by Alginate/Pectin nanocomposite: a novel and ecofriendly adsorbent. Groundw Sustain Dev 11:100373

    Article  Google Scholar 

  86. Zhang W, Song J, He Q, Wang H, Lyu W, Feng H, Chen L (2020) Novel pectin based composite hydrogel derived from grapefruit peel for enhanced Cu (II) removal. J Hazard Mater 384:121445

    Article  CAS  PubMed  Google Scholar 

  87. Mahmoud ME, Mohamed AK (2020) Novel derived pectin hydrogel from mandarin peel based metal-organic frameworks composite for enhanced Cr (VI) and Pb (II) ions removal. Int J Biol Macromol 164:920–931

    Article  CAS  PubMed  Google Scholar 

  88. Jiang C, Wang X, Qin D, Da W, Hou B, Hao C, Wu J (2019) Construction of magnetic lignin-based adsorbent and its adsorption properties for dyes. J Hazard Mater 369:50–61

    Article  CAS  PubMed  Google Scholar 

  89. Bok-Badura J, Jakóbik-Kolon A, Karoń K, Mitko K (2018) Sorption studies of heavy metal ions on pectin-nano-titanium dioxide composite adsorbent. Sep Sci Technol 53:1034–1044

    Article  CAS  Google Scholar 

  90. Tobimatsu Y, Schuetz M (2019) Lignin polymerization: how do plants manage the chemistry so well? Currr Opin Biotechnol 56:75–81

    Article  CAS  Google Scholar 

  91. Popovic AL, Rusmirovic JD, Velickovic Z, Radovanovic Z, Ristic M, Pavlovic VP, Marinkovic AD (2020) Novel amino-functionalized lignin microspheres: high performance biosorbent with enhanced capacity for heavy metal ion removal. Int J Biol Macromol 156:1160–1173

    Article  CAS  PubMed  Google Scholar 

  92. Sohni S, Hashim R, Nidaullah H, Lamaming J, Sulaiman O (2019) Chitosan/nano-lignin based composite as a new sorbent for enhanced removal of dye pollution from aqueous solutions. Int J Biol Macromol 132:1304–1317

    Article  CAS  PubMed  Google Scholar 

  93. González-López ME, Robledo-Ortíz JR, Rodrigue D, Pérez-Fonseca AA (2020) Highly porous lignin composites for dye removal in batch and continuous-flow systems. Mater Lett 263:127289

    Article  CAS  Google Scholar 

  94. Wu Z, Huang W, Shan X, Li Z (2020) Preparation of a porous graphene oxide/alkali lignin aerogel composite and its adsorption properties for methylene blue. Int J Biol Macromol 143:325–333

    Article  CAS  PubMed  Google Scholar 

  95. Zhai R, Hu J, Chen X, Xu Z, Wen Z, Jin M (2020) Facile synthesis of manganese oxide modified lignin nanocomposites from lignocellulosic biorefinery wastes for dye removal. Bioresour Technol 315:123846

    Article  CAS  PubMed  Google Scholar 

  96. Shi X, Wang C, Dong B, Kong S, Das R, Pan D, Guo Z (2020) Cu/N doped lignin for highly selective efficient removal of As (v) from polluted water. Int J Biol Macromol 161:147–154

    Article  CAS  PubMed  Google Scholar 

  97. Wang G, Zhang J, Lin S, Xiao H, Yang Q, Chen S, Gu Y et al (2020) Environmentally friendly nanocomposites based on cellulose nanocrystals and polydopamine for rapid removal of organic dyes in aqueous solution. Cellulose 27:2085–2097

    Article  CAS  Google Scholar 

  98. Eltaweil AS, Elgarhy GS, El-Subruiti GM, Omer AM (2020) Carboxymethyl cellulose/carboxylated graphene oxide composite microbeads for efficient adsorption of cationic methylene blue dye. Inter J Biol Macromol 154:307–318

    Article  CAS  Google Scholar 

  99. Yu Z, Hu C, Dichiara AB, Jiang W, Gu J (2020) Cellulose nanofibril/carbon nanomaterial hybrid aerogels for adsorption removal of cationic and anionic organic dyes. Nanomaterials 10:169

    Article  CAS  PubMed Central  Google Scholar 

  100. Sankararamakrishnan N, Singh N, Srivastava I (2020) Hierarchical nano Fe (0)@ FeS doped cellulose nanofibres derived from agrowaste-potential bionanocomposite for treatment of organic dyes. Int J Biol Macromol 151:713–722

    Article  CAS  PubMed  Google Scholar 

  101. Arabkhani P, Asfaram A (2020) Development of a novel three-dimensional magnetic polymer aerogel as an efficient adsorbent for malachite green removal. J Hazard Mater 384:121394

    Article  CAS  PubMed  Google Scholar 

  102. Mohamed HS, Soliman NK, Moustafa AF, Abdel-Gawad OF, Taha RR, Ahmed SA (2019) Nano metal oxide impregnated chitosan-4-nitroacetophenone for industrial dye removal. Int J Environ Anal Chem. https://doi.org/10.1080/03067319.2019.1691178

    Article  Google Scholar 

  103. Samadder R, Akter N, Roy AC, Uddin MM, Hossen MJ, Azam MS (2020) Magnetic nanocomposite based on polyacrylic acid and carboxylated cellulose nanocrystal for the removal of cationic dye. RSC Adv 10:11945–11956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Sabarish R, Unnikrishnan G (2018) Polyvinyl alcohol/carboxymethyl cellulose/ZSM-5 zeolite biocomposite membranes for dye adsorption applications. Carbohydr Polym 199:129–140

    Article  CAS  PubMed  Google Scholar 

  105. Soon CY, Rahman NA, Tee YB, Talib RA, Tan CH, Abdan K, Chan EWC (2019) Electrospun biocomposite: nanocellulose and chitosan entrapped within a poly (hydroxyalkanoate) matrix for congo red removal. J Mater Res Technol 8:5091–5102

    Article  CAS  Google Scholar 

  106. Bhangi BK, Ray SK (2020) Nano silver chloride and alginate incorporated composite copolymer adsorbent for adsorption of a synthetic dye from water in a fixed bed column and its photocatalytic reduction. Int J Biol Macromol 144:801–812

    Article  CAS  PubMed  Google Scholar 

  107. Shokoohi R, Torkshavand Z, Mahmoudi MM, Behgoo AM, Ghaedrahmati E, Hosseini FM (2019) effective removal of azo dye reactive blue 222 from aqueous solutions using modified magnetic nanoparticles with sodium alginate/hydrogen peroxide. Environ Prog Sustain Energy 38:S205–S213

    Article  CAS  Google Scholar 

  108. Zhao X, Wang X, Lou T (2020) Preparation of fibrous chitosan/sodium alginate composite foams for the adsorption of cationic and anionic dyes. J Hazard Mater 403:124054

    Article  PubMed  CAS  Google Scholar 

  109. Yadav S, Asthana A, Chakraborty R, Jain B, Singh AK, Carabineiro SA, Hassan AB et al (2020) Cationic dye removal using novel magnetic/activated charcoal/β-cyclodextrin/alginate polymer nanocomposite. Nanomaterials 10:170

    Article  CAS  PubMed Central  Google Scholar 

  110. Wang Y, Zhou R, Wang C, Zhou G, Hua C, Cao Y, Song Z (2020) Novel environmental-friendly nano-composite magnetic attapulgite functionalized by chitosan and EDTA for cadmium (II) removal. J Alloys Compd 817:153286

    Article  CAS  Google Scholar 

  111. Sikder MT, Kubota R, Akter M, Rahman MM, Hossain KFB, Rahaman MS, Kurasaki M et al (2019) Adsorption mechanism of Cu (II) in water environment using chitosan-nano zero valent iron-activated carbon composite beads. Desalin Water Treatm 145:202–210

    Article  CAS  Google Scholar 

  112. Chen L, Yu H, Deutschman C, Yang T, Tam KC (2020) Novel design of Fe-Cu alloy coated cellulose nanocrystals with strong antibacterial ability and efficient Pb2+ removal. Carbohydr Polym 234:115889

    Article  CAS  PubMed  Google Scholar 

  113. Maaloul N, Oulego P, Rendueles M, Ghorbal A, Díaz M (2020) Synthesis and characterization of eco-friendly cellulose beads for copper (II) removal from aqueous solutions. Environ Sci Poll Res 27:23447–23463

    Article  CAS  Google Scholar 

  114. Tabatabaeefar A, Keshtkar AR, Talebi M, Abolghasemi H (2020) Polyvinyl Alcohol/Alginate/Zeolite Nanohybrid for Removal of Metals. Chem Eng Technol 43:343–354

    Article  CAS  Google Scholar 

  115. Iqbal J, Shah NS, Sayed M, Imran M, Muhammad N, Howari FM, Polychronopoulou K et al (2019) Synergistic effects of activated carbon and nano-zerovalent copper on the performance of hydroxyapatite-alginate beads for the removal of As3+ from aqueous solution. J Clean Prod 235:875–886

    Article  CAS  Google Scholar 

  116. Liang RH, Li Y, Huang L, Wang XD, Hu XX, Liu CM, Chen J et al (2020) Pb2+ adsorption by ethylenediamine-modified pectins and their adsorption mechanisms. Carbohydr Polym 234:115911

    Article  CAS  PubMed  Google Scholar 

  117. Naeimi S, Faghihian H (2019) Application of novel adsorbent prepared by mucor hiemalis biomass impregnated with calcium alginate for removal of Sr2+ from aqueous solutions. J Polym Environ 27:1572–1583

    Article  CAS  Google Scholar 

  118. Kuczajowska-Zadrożna M, Filipkowska U, Jóźwiak T (2020) Adsorption of Cu (II) and Cd (II) from aqueous solutions by chitosan immobilized in alginate beads. J Environ Chem Eng 8:103878

    Article  CAS  Google Scholar 

  119. Salih SS, Mohammed HN, Abdullah GH, Kadhom M, Ghosh TK (2020) Simultaneous removal of Cu (II), Cd (II), and industrial dye onto a composite chitosan biosorbent. J Polym Environ 28:354–365

    Article  CAS  Google Scholar 

  120. Jiang X, An QD, Xiao ZY, Zhai SR, Shi Z (2019) Versatile core/shell-like alginate@ polyethylenimine composites for efficient removal of multiple heavy metal ions (Pb2+, Cu2+, CrO42-): batch and fixed-bed studies. Mater Res Bull 118:110526

    Article  CAS  Google Scholar 

  121. Huang C, Shi X, Wang C, Guo L, Dong M, Hu G, Guo Z et al (2019) Boosted selectivity and enhanced capacity of As (V) removal from polluted water by triethylenetetramine activated lignin-based adsorbents. Int J Biol Macromol 140:1167–1174

    Article  CAS  PubMed  Google Scholar 

  122. Kenawy IM, Eldefrawy MM, Eltabey RM, Zaki EG (2019) Melamine grafted chitosan-montmorillonite nanocomposite for ferric ions adsorption: central composite design optimization study. J Clean Prod 241:118189

    Article  CAS  Google Scholar 

Download references

Funding

No funding was received for conducting this study.

Author information

Authors and Affiliations

Authors

Contributions

AK and GÖK contributed to the study conception and design. Both authors had the idea for the article. Material preparation, data collection and analysis were performed by both of them. The first draft of the manuscript was written by AK but two authors commented on previous versions of the manuscript. The graphical abstract and figures were drawn by both authors. Two authors read and approved the final manuscript. Each author has 50% contribution.

Corresponding author

Correspondence to Asgar Kayan.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kayan, G.Ö., Kayan, A. Composite of Natural Polymers and Their Adsorbent Properties on the Dyes and Heavy Metal Ions. J Polym Environ 29, 3477–3496 (2021). https://doi.org/10.1007/s10924-021-02154-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-021-02154-x

Keywords

Navigation