Skip to main content
Log in

Impact of PVDF/PEO blend composition on the β-phase crystallization and dielectric properties of silica nanoparticles incorporated polymer nanocomposites

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Polymer nanocomposite (PNC) films consisted of varying weight composition polymer blends of poly(vinylidene fluoride) (PVDF) and poly(ethylene oxide) (PEO) as host organic matrices incorporated with 5 wt% amorphous silica (SiO2) nanoparticles as inorganic nanofiller have been prepared by solution casting method. The alterations in morphology, PVDF polymorphism and relative fraction of β-phase crystals, degree of crystallinity, and the polymer-polymer and polymer-nanoparticle interactions with change of polymer blend compositional weight ratio (i.e., PVDF/PEO = 100/0, 75/25, 50/50, 25/75, and 0/100) have been investigated by the SEM, EDX, XRD, and FTIR measurements. The frequency dependent complex dielectric permittivity, ac electrical conductivity, and electric modulus of the PNC films are studied at room temperature by employing the DRS technique. The SEM images reveal that the spherulite morphology of PVDF/PEO blend structures incorporated with SiO2 nanoparticles is altered enormously with the change of polymers blend compositions in the PNC films. The XRD results of these PNC films confirm that the β-phase crystallization is considerably enhanced in the PVDF-rich PNC film but it decreases almost linearly with the increase of PEO amount in the host matrices of these films, and remains higher for the PNC films in comparison to that of the pristine polymer blend films. The degree of crystallinity of these PNC films enhances non-linearly with the increase of PEO concentration but it is found low as compared to that of the PVDF/PEO blend films without nanofiller. Dielectric dispersion in the frequency range from 20 Hz to1 MHz reveals that the interfacial polarization significantly contributed to the enhancement of dielectric permittivity in the audio frequency range of dielectric spectra of these PNC films. The addition of 5 wt% amount of SiO2 nanoparticles in the pristine PVDF and PEO matrices reduces the dielectric permittivity over the entire frequency range, whereas the presence of these nanofiller particles in the PVDF/PEO blend matrices based PNC films increases at radio frequencies which is predominantly due to enhancement of the β-phase crystals. The relaxation time values determined from the relaxation peaks exhibited in the loss part of electric modulus spectra confirm that there is an increase in hindrance to the PEO chain segmental dynamics with the increase of PVDF amount in the polymer blend compositions of these PNC films, whereas the dc electrical conductivity is found independent of the blend composition. The polymer blend compositional ratio dependent promising structural, dielectric, and electrical properties of these PNC films offer their suitability as tunable novel nanodielectric materials of multifunctionality for the flexible electronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Guo JZ, Song K, Liu C (2019) Polymer-based multifunctional nanocomposites and their applications. Elsevier Inc, Amsterdam

    Google Scholar 

  2. Shen Y, Zhang X, Lin Y, Nan CW (2017) Polymer nanocomposites dielectrics for energy applications. In: Lin Z, Yang Y, Zhang A (eds) Polymer-engineered nanostructures for advanced energy applications. Engineering Materials and Processes. Springer, Cham

    Google Scholar 

  3. Zhao Y, Han ST, Roy VAL (2014) In: Tjong SC (ed) Nanocomposite dielectric materials for organic flexible electronics in Nanocrystalline materials. Elsevier Ltd, Waltham, pp 195–220

    Google Scholar 

  4. Tanaka T, Vaughan AS (2017) Tailoring of nanocomposite dielectrics: from fundamentals to devices and applications. Pan Stanford Publishing Pte. Ltd., Singapore

    Google Scholar 

  5. Kumar S, Supriya S, Kar M (2018) Enhancement of dielectric constant in polymer-ceramic nanocomposite for flexible electronics and energy storage applications. Compos Sci Technol 157:48–56

    Article  CAS  Google Scholar 

  6. Ambrosio R, Carrillo A, de la Luz MM, de la Torre K, TorreAlba R, Moreno M, Vazquez H, Flores J, Vivaldo I (2018) Polymeric nanocomposites membranes with high permittivity based on PVA-ZnO nanoparticles for potential applications in flexible electronics. Polymers 10:1370

    Article  PubMed Central  CAS  Google Scholar 

  7. Kar E, Bose N, Dutta B, Banerjee S, Mukherjee N, Mukherjee S (2019) 2D SnO2 nanosheet/PVDF composite based flexible, self-cleaning piezoelectric energy harvester. Energy Convers Manag 184:600–608

    Article  CAS  Google Scholar 

  8. Al-Hazmi FS, de Leeuw DM, Al-Ghamdi AA, Shokr FS (2017) Synthesis and characterization of novel Cu2O/PVDF nanocomposites for flexible ferroelectric organic electronic memory devices. Curr Appl Phys 17:1181–1188

    Article  Google Scholar 

  9. Thakur P, Kool A, Hoque NA, Bagchi B, Khatun F, Biswas P, Brahma D, Roy S, Banerjee S, Das S (2018) Superior performances of in situ synthesized ZnO/PVDF thin film based self-poled piezoelectric nanogenerator and self-charged photo-power bank with high durability. Nano Energy 44:456–467

    Article  CAS  Google Scholar 

  10. Ponnamma D, Cabibihan JJ, Rajan M, Pethaiah SS, Deshmukh K, Gogoi JP, Pasha SKK, Ahamed MB, Krishnegowda J, Chandrashekar BN, Polu AR, Cheng C (2019) Synthesis, optimization and applications of ZnO/polymer nanocomposites. Mater Sci Eng C 98:1210–1240

    Article  CAS  Google Scholar 

  11. Abdelghany AM, Abdelrazek EM, Badr SI, Morsi MA (2016) Effect of gamma-irradiation on (PEO/PVP)/Au nanocomposite: materials for electrochemical and optical applications. Mater Des 97:532–543

    Article  CAS  Google Scholar 

  12. Choudhary S, Sengwa RJ (2018) ZnO nanoparticles dispersed PVA–PVP blend matrix based high performance flexible nanodielectrics for multifunctional microelectronic devices. Curr Appl Phys 18:1041–1058

    Article  Google Scholar 

  13. Loste J, Lopez-Cuesta JM, Billon L, Garay H, Save M (2019) Transparent polymer nanocomposites: An overview on their synthesis and advanced properties. Prog Polym Sci 89:133–158

    Article  CAS  Google Scholar 

  14. Xu F, Zhang H, Jin L, Li Y, Li J, Gan G, Wei M, Li M, Liao Y (2018) Controllably degradable transient electronic antennas based on water-soluble PVA/TiO2 films. J Mater Sci 53:2638–2647

    Article  CAS  Google Scholar 

  15. Sengwa RJ, Choudhary S, Dhatarwal P (2019) Nonlinear optical and dielectric properties of TiO2 nanoparticles incorporated PEO/PVP blend matrix based multifunctional polymer nanocomposites. J Mater Sci Mater Electron 30:12275–12294

    Article  CAS  Google Scholar 

  16. Aqeel SM, Huang Z, Walton J, Baker C, Falkner D’L, Liu Z, Wang Z (2018) Polyvinylidene fluoride (PVDF)/polyacrylonitrile (PAN)/carbon nanotube nanocomposites for energy storage and conversion. Adv Compos Hybrid Mater 1:185–192

    Article  PubMed  Google Scholar 

  17. Choudhary S (2018) Characterization of amorphous silica nanofiller effect on the structural, morphological, optical, thermal, dielectric and electrical properties of PVA–PVP blend based polymer nanocomposites for their flexible nanodielectric applications. J Mater Sci Mater Electron 29:10517–10534

    Article  CAS  Google Scholar 

  18. Zhao X, Zhang W, Chen S, Zhang J, Wang X (2012) Hydrophilicity and crystallization behavior of PVDF/PMMA/TiO2(SiO2) composites prepared by in situ polymerization. J Polym Res 19:9862

    Article  CAS  Google Scholar 

  19. Chiu FC, Chen CC, Chen YJ (2014) Binary and ternary nanocomposites based on PVDF, PMMA, and PVDF/PMMA blends: polymorphism, thermal, and rheological properties. J Polym Res 21:378

    Article  CAS  Google Scholar 

  20. Mohamadi S, Sharifi-Sanjani N, Foyouhi A (2013) Evaluation of graphene nanosheets influence on the physical properties of PVDF/PMMA blend. J Polym Res 20:46

    Article  CAS  Google Scholar 

  21. Yang D, Xu H, Wu Y, Wang J, Xu Z, Shi W (2013) Effect of hydroxylated multiwall carbon nanotubes on dielectric property of poly (vinylidene fluoride)/poly (methyl methacrylate)/hydroxylated multiwall carbon nanotubes blend. J Polym Res 20:236

    Article  CAS  Google Scholar 

  22. Sengwa RJ, Choudhary S, Dhatarwal P (2019) Investigation of alumina nanofiller impact on the structural and dielectric properties of PEO/PMMA blend matrix-based polymer nanocomposites. Adv Compos Hybrid Mater 2:162–175

    Article  Google Scholar 

  23. Morsi MA, Rajeh A, Menazea AA (2019) Nanosecond laser-irradiation assisted the improvement of structural, optical and thermal properties of polyvinyl pyrrolidone/carboxymethyl cellulose blend filled with gold nanoparticles. J Mater Sci Mater Electron 30:2693–2705

    Article  CAS  Google Scholar 

  24. Li X, Chen Y, Hu X, Zhang Y, Hu L (2014) Desalination of dye solution utilizing PVA/PVDF hollow fiber composite membrane modified with TiO2 nanoparticles. J Membr Sci 471:118–129

    Article  CAS  Google Scholar 

  25. Rajesh K, Crasta V, Kumar NBR, Shetty G, Rekha PD (2019) Structural, optical, mechanical and dielectric properties of titanium dioxide doped PVA/PVP nanocomposite. J Polym Res 26:99

    Article  CAS  Google Scholar 

  26. Fu Q, Lin G, Chen X, Yu Z, Yang R, Li M, Zeng X, Chen J (2018) Mechanically reinforced PVdF/PMMA/SiO2 composite membrane and its electrochemical properties as a separator in lithium-ion batteries. Energy Technol 6:144–152

    Article  CAS  Google Scholar 

  27. Sengwa RJ, Choudhary S, Sankhla S (2010) Dielectric properties of montmorillonite clay filled poly (vinyl alcohol)/poly (ethylene oxide) blend nanocomposites. Compos Sci Technol 70:1621–1627

    Article  CAS  Google Scholar 

  28. Martins P, Lopes AC, Lanceros-Mendez S (2014) Electroactive phases of poly(vinylidene fluoride):determination, processing and applications. Prog Polym Sci 39:683–706

    Article  CAS  Google Scholar 

  29. Prateek, Thakur VK, Gupta RK (2016) Recent progress on ferroelectric polymer-based nanocomposites for high energy density capacitors: synthesis, dielectric properties, and future aspects. Chem Rev 116:4260–4317

    Article  CAS  PubMed  Google Scholar 

  30. Xia W, Zhang Z (2018) PVDF-based dielectric polymers and their applications in electronic materials. IET Nanodielectr 1:17–31

    Article  Google Scholar 

  31. Zhu Y, Jiang P, Zhang Z, Huang X (2017) Dielectric phenomena and electrical energy storage of poly(vinylidene fluoride) based high-k polymers. Chin Chem Lett 28:2027–2035

    Article  CAS  Google Scholar 

  32. Hu X, Yi K, Liu J, Chu B (2018) High energy density dielectrics based on PVDF-based polymers. Energy Technol 6:849–864

    Article  CAS  Google Scholar 

  33. An N, Liu H, Ding Y, Lu B, Zhang M (2012) Fabrication of micro-structures on a PVDF/TiO2 nano-composite film using photocatalytic lithography. Appl Surf Sci 258:5052–5055

    Article  CAS  Google Scholar 

  34. Phromviyo N, Thongbai P, Maensiri S (2018) High dielectric permittivity and suppressed loss tangent in PVDF polymer nanocomposites using gold nanoparticle-deposited BaTiO3 hybrid particles as fillers. Appl Surf Sci 446:236–242

    Article  CAS  Google Scholar 

  35. Kushwah M, Sagar R, Rogachev AA, Gaur MS (2019) Dielectric, pyroelectric and polarization behavior of polyvinylidene fluoride (PVDF) - gold nanoparticles (AuNPs) nanocomposites. Vacuum 166:298–306

    Article  CAS  Google Scholar 

  36. Dash S, Choudhary RNP, Goswami MN (2017) Enhanced dielectric and ferroelectric properties of PVDF-BiFeO3 composites in 0–3 connectivity. J Alloys Compd 715:29–36

    Article  CAS  Google Scholar 

  37. Ismail AM, Mohammed MI, Fouad SS (2018) Optical and structural properties of polyvinylidene fluoride (PVDF)/reduced graphene oxide (RGO) nanocomposites. J Mol Struct 1170:51–59

  38. Pereira ELM, Batista ASM, Alves N, de Oliveira AH, Ribeiro FAS, Santos AP, de Faria LO (2018) Effects of the addition of MWCNT and ZrO2 nanoparticles on the dosimetric properties of PVDF. Appl Radiat Isot 141:275–281

    Article  CAS  PubMed  Google Scholar 

  39. Xu P, Fu W, Cui Z, Ding Y (2018) Enhancement of polar phase and conductivity relaxation in PIL-modified GO/PVDF composites. Appl Phys Lett 112:063904

    Article  CAS  Google Scholar 

  40. Gaur MS, Indolia AP, Rogachev AA, Rahachou AV (2015) Influence of SiO2 nanoparticles on morphological, thermal, and dielectric properties of PVDF. J Therm Anal Calorim 122:1403–1416

    Article  CAS  Google Scholar 

  41. Mendes SF, Costa CM, Sencadas V, Nunes JS, Costa P, Gregorio Jr R, Méndez SL (2009) Effect of the ceramic grain size and concentration on the dynamical mechanical and dielectric behavior of poly(vinilidene fluoride)/Pb(Zr0.53Ti0.47)O3 composites. Appl Phys A Mater Sci Process 96:899–908

    Article  CAS  Google Scholar 

  42. Zhao M, Ren ZZ, Yang MB, Yang W (2019) Effects of modified nano-silica on the microstructure of PVDF and its microporous membranes. J Polym Res 26:28

    Article  CAS  Google Scholar 

  43. Khalifa M, Mahendran A, Anandhan S (2019) Synergism of graphitic-carbon nitride and electrospinning on the physico-chemical characteristics and piezoelectric properties of flexible poly(vinylidene fluoride) based nanogenerator. J Polym Res 26:73

    Article  CAS  Google Scholar 

  44. Dutta B, Bose N, Kar E, Das S, Mukherjee S (2017) Smart, lightweight, flexible NiO/poly(vinylidene flouride) nanocomposites film with significantly enhanced dielectric, piezoelectric and EMI shielding properties. J Polym Res 24:220

    Article  CAS  Google Scholar 

  45. Svirskas S, Simenas M, Banys J, Martins P, Lanceros-Mendez S (2015) Dielectric relaxation and ferromagnetic resonance in magnetoelectric (Polyvinylidene-fluoride)/ferrite composites. J Polym Res 22:141

    Article  CAS  Google Scholar 

  46. Varlec A, Eršte A, Bobnar V, Remškar M (2016) Influence of preparation conditions on structural and dielectric properties of PVDF–MoS2 nanotubes composite films. J Polym Res 23:34

    Article  CAS  Google Scholar 

  47. Atorngitjawat P (2017) Effects of processing conditions and crystallization on dynamic relaxations in semicrystalline poly(vinylidene fluoride) films. Macromol Res 25:391–399

    Article  CAS  Google Scholar 

  48. Wolff S, Jirasek F, Beuermann S, Türk M (2015) Crystal phase transformation of α into β phase poly(vinylidene fluoride) via particle formation caused by rapid expansion of supercritical solutions. RSC Adv 5:66644–66649

    Article  CAS  Google Scholar 

  49. Cai X, Lei T, Sun D, Lin L (2017) A critical analysis of the α, β and γ phases in poly(vinylidene fluoride) using FTIR. RSC Adv 7:15382–15389

    Article  CAS  Google Scholar 

  50. Cui Z, Hassankiadeh NT, Zhuang Y, Drioli E, Lee YM (2015) Crystalline polymorphism in poly(vinylidenefluoride) membranes. Prog Polym Sci 51:94–126

    Article  CAS  Google Scholar 

  51. Jiang B, Pang X, Li B, Lin Z (2015) Organic–inorganic nanocomposites via placing monodisperse ferroelectric nanocrystals in direct and permanent contact with ferroelectric polymers. J Am Chem Soc 137:11760–11767

    Article  CAS  PubMed  Google Scholar 

  52. Ghafari E, Jiang X, Lu N (2018) Surface morphology and beta-phase formation of single polyvinylidene fluoride (PVDF) composite nanofibers. Adv Compos Hybrid Mater 1:332–340

    Article  Google Scholar 

  53. Xue Z, He D, Xie X (2015) Poly(ethylene oxide)–based electrolytes for lithium-ion batteries. J Mater Chem A 3:19218–19253

    Article  CAS  Google Scholar 

  54. Arya A, Sharma AL (2017) Insights into the use of polyethylene oxide in energy storage/conversion devices: a critical review. J Phys D Appl Phys 50:443002

    Article  CAS  Google Scholar 

  55. Wang F, Li L, Yang X, You J, Xu Y, Wang H, Ma Y, Gao G (2018) Influence of additives in a PVDF-based solid polymer electrolyte on conductivity and Li-ion battery performance. Sustain Energy Fuels 2:492–498

    Article  CAS  Google Scholar 

  56. Janakiraman S, Surendran A, Ghosh S, Anandhan S, Venimadhav A (2018) A new strategy of PVDF based Li-salt polymer electrolyte through electrospinning for lithium battery application. Mater Res Exp 6:035303

    Article  CAS  Google Scholar 

  57. Xu P, Fu W, Luo X, Ding Y (2017) Enhanced dc conductivity and conductivity relaxation in PVDF/ionic liquid composites. Mater Lett 206:60–63

    Article  CAS  Google Scholar 

  58. Yang Y, Zhang J, Zhou C, Wu S, Xu S, Liu W, Han H, Chen B, Zhao X (2008) Effect of lithium iodide addition on poly(ethylene oxide)−poly(vinylidene fluoride) polymer-blend electrolyte for dye-sensitized nanocrystalline solar cell. J Phys Chem B 112:6594–6602

    Article  CAS  PubMed  Google Scholar 

  59. Rathika R, Padmaraj O, Suthanthiraraj SA (2018) Electrical conductivity and dielectric relaxation behaviour of PEO/PVdF-based solid polymer blend electrolytes for zinc battery applications. Ionics 24:243–255

    Article  CAS  Google Scholar 

  60. Chen P, Liang X, Wang J, Zhang D, Yang S, Wu W, Zhang W, Fan X, Zhang D (2017) PEO/PVDF-based gel polymer electrolyte by incorporating nano-TiO2 for electrochromic glass. J Sol-Gel Technol 81:850–858

    Article  CAS  Google Scholar 

  61. Patla SK, Ray R, Asokan K, Karmakar S (2018) Investigation of ionic conduction in PEO–PVDF based blend polymer electrolytes. J Appl Phys 123:125102

    Article  CAS  Google Scholar 

  62. Mohamadi M, Garmabi H, Papila M (2016) Effect of miscibility state on crystallization behavior and polymorphism in crystalline/crystalline blends of poly(vinylidene fluoride)/poly(ethylene oxide). Macromol Res 24:698–709

    Article  CAS  Google Scholar 

  63. Tamaňo-Machiavello MN, Costa CM, Molina-Mateo J, Torregrosa-Cabanilles C, Dueňas JMM, Kalkura SN, Lanceros-Mendez S, i Serra RS, Ribelles JLG (2015) Phase morphology and crystallinity of poly(vinylidene fluoride)/poly(ethylene oxide) piezoelectric blend membranes. Mater Today Commun 4:214–221

  64. Tamaňo-Machiavello MN, Costa CM, Romero-Colomer FJ, Dueňas JMM, Lanceros-Mendez S, Ribelles JLG (2018) Crystallization kinetics of poly(ethylene oxide) confined in semicrystalline poly(vinylidene) fluoride. J Polym Sci Polym Phys 56:588–597

    Article  CAS  Google Scholar 

  65. Choudhary S, Sengwa RJ (2019) Investigation on structural and dielectric properties of silica nanoparticles incorporated poly(ethylene oxide)/poly(vinyl pyrrolidone) blend matrix based nanocomposites. J Inorg Organomet Polym Mater 29:592–607

    Article  CAS  Google Scholar 

  66. Zhou L, Wu N, Cao Q, Jing B, Wang X, Wang Q, Kuang H (2013) A novel electrospun PVDF/PMMA gel polymer electrolyte with in situ TiO2 for Li-ion batteries. Solid State Ionics 249–250:93–97

    Article  CAS  Google Scholar 

  67. Choudhary S (2018) Effects of amorphous silica nanoparticles and polymer blend compositions on the structural, thermal and dielectric properties of PEO–PMMA blend based polymer nanocomposites. J Polym Res 25:116

    Article  CAS  Google Scholar 

  68. Choudhary S, Sengwa RJ (2017) Effects of different inorganic nanoparticles on the structural, dielectric and ion transportation properties of polymers blend based nanocomposite solid polymer electrolytes. Electrochim Acta 247:924–941

    Article  CAS  Google Scholar 

  69. Grabowski CA, Fillery SP, Westing NM, Chi C, Meth JS, Durstock MF, Vaia RA (2013) Dielectric breakdown in silica–amorphous polymer nanocomposite films: the role of the polymer matrix. ACS Appl Mater Interfaces 5:5486–5492

    Article  CAS  PubMed  Google Scholar 

  70. Deshmukh K, Ahamed MB, Sadasivuni KK, Ponnamma D, Al-Ali AMM, Deshmukh RR, Pasha SKK, Polu AR, Chidambaram K (2017) Fumed SiO2 nanoparticle reinforced biopolymer blend nanocomposites with high dielectric constant and low dielectric loss for flexible organic electronics. J Appl Polym Sci 134:44427

    Article  CAS  Google Scholar 

  71. Zou H, Wu S, Shen J (2008) Polymer/silica nanocomposites: preparation, characterization, properties, and applications. Chem Rev 108:3893–3957

    Article  CAS  PubMed  Google Scholar 

  72. Park JW, Seo YA, Kim I, Ha CS (2004) Investigating the crystalline structure of poly(vinylidene fluoride) (PVDF) in PVDF/silica binary and PVDF/poly(methyl methacrylate)/silica ternary hybrid composites using FTIR and solid-state 19F MAS NMR spectroscopy. Macromolecules 37:429–436

    Article  CAS  Google Scholar 

  73. Liang S, Kang Y, Tiraferri A, Giannelis EP, Huang X, Elimelech M (2013) Highly hydrophilic polyvinylidene fluoride (PVDF) ultrafiltration membranes via postfabrication grafting of surface-tailored silica nanoparticles. ACS Appl Mater Interfaces 5:6694–6703

    Article  CAS  PubMed  Google Scholar 

  74. Wei C, Dai F, Lin L, An Z, He Y, Chen X, Chen L, Zhao Y (2018) Simplified and robust adhesive-free superhydrophobic SiO2-decorated PVDF membranes for efficient oil/water separation. J Membr Sci 555:220–228

    Article  CAS  Google Scholar 

  75. Liang HQ, Wu QY, Wan LS, Huang XJ, Xu ZK (2014) Thermally induced phase separation followed by in situ sol–gel process: a novel method for PVDF/SiO2 hybrid membranes. J Membr Sci 465:56–67

    Article  CAS  Google Scholar 

  76. Liu T, Li X, Wang D, Huang Q, Liu Z, Li N, Xiao C (2017) Superhydrophobicity and regeneration of PVDF/SiO2 composite films. Appl Surf Sci 396:1443–1449

    Article  CAS  Google Scholar 

  77. Wu X, Zhao B, Wang L, Zhang Z, Li J, He X, Zhang H, Zhao X, Wang H (2018) Superhydrophobic PVDF membrane induced by hydrophobic SiO2 nanoparticles and its use for CO2 absorption. Sep Purif Technol 190:108–116

    Article  CAS  Google Scholar 

  78. Li D, Yao J, Sun H, Liu B, Li D, van Agtmaal S, Feng C (2018) Preparation and characterization of SiO2/PDMS/PVDF composite membrane for phenols recovery from coal gasification wastewater in pervaporation. Chem Eng Res Des 132:424–435

    Article  CAS  Google Scholar 

  79. Farahani MHDA, Vatanpour V (2018) A comprehensive study on the performance and antifouling enhancement of the PVDF mixed matrix membranes by embedding different nanoparticulates: clay, functionalized carbon nanotube, SiO2 and TiO2. Sep Purif Technol 197:372–381

    Article  CAS  Google Scholar 

  80. Zuo X, Shi W, Tian Z, Yu S, Wang S, He J (2013) Desalination of water with a high degree of mineralization using SiO2/PVDF membranes. Desalination 311:150–155

    Article  CAS  Google Scholar 

  81. Efome JE, Baghbanzadeh M, Rana D, Matsuura T, Lan CQ (2015) Effects of superhydrophobic SiO2 nanoparticles on the performance of PVDF flat sheet membranes for vacuum membrane distillation. Desalination 373:47–57

    Article  CAS  Google Scholar 

  82. Choudhary S, Sengwa RJ (2015) Dielectric dispersion and relaxation studies of melt compounded poly(ethylene oxide)/silicon dioxide nanocomposites. Polym Bull 72:2591–2604

    Article  CAS  Google Scholar 

  83. Hong B, Panagiotopoulos AZ (2012) Molecular dynamics simulations of silica nanoparticles grafted with poly(ethylene oxide) oligomer chains. J Phys Chem B 116:2385–2395

    Article  CAS  PubMed  Google Scholar 

  84. Burgaz E (2011) Poly(ethylene-oxide)/clay/silica nanocomposites: morphology and thermomechanical properties. Polymer 52:5118–5126

    Article  CAS  Google Scholar 

  85. Madathingal RR, Wunder SL (2011) Thermal degradation of PEO on SiO2 nanoparticles as a function of SiO2 silanol density, hydrophobicity and size. Thermochim Acta 523:182–186

    Article  CAS  Google Scholar 

  86. Dhatarwal P, Choudhary S, Sengwa RJ (2018) Electrochemical performance of Li+-ion conducting solid polymer electrolytes based on PEO–PMMA blend matrix incorporated with various inorganic nanoparticles for the lithium ion batteries. Compos Commun 10:11–17

    Article  Google Scholar 

  87. Liu S, Imanishi N, Zhang T, Hirano A, Takeda Y, Yamamoto O, Yang J (2010) Effect of nano-silica filler in polymer electrolyte on Li dendrite formation in Li/poly(ethylene oxide)–Li(CF3SO2)2N/Li. J Power Sources 195:6847–6853

    Article  CAS  Google Scholar 

  88. Dhatarwal P, Sengwa RJ (2019) Polymers compositional ratio dependent morphology, crystallinity, dielectric dispersion, structural dynamics, and electrical conductivity of PVDF/PEO blend films. Macromol Res. https://doi.org/10.1007/s13233-019-7142-0

  89. Sengwa RJ, Choudhary S (2017) Dielectric and electrical properties of PEO–Al2O3 nanocomposites. J Alloys Compd 701:652–659

    Article  CAS  Google Scholar 

  90. Choudhary S, Sengwa RJ (2017) Morphological, structural, dielectric and electrical properties of PEO–ZnO nanodielectric films. J Polym Res 24:54

    Article  CAS  Google Scholar 

  91. Deshmukh K, Ahamed MB, Deshmukh RR, Pasha SKK, Sadasivuni KK, Ponnamma D, AlMaadeed MAl-Ali (2017) Striking multiple synergies in novel three-phase fluoropolymer nanocomposites by combining titanium dioxide and graphene oxide as hybrid fillers. J Mater Sci Mater Electron 28:559–575

  92. Kiran Kumar K, Ravi M, Pavani Y, Bhavani S, Sharma AK, Narasimha Rao VVR (2014) Investigations on PEO/PVP/NaBr complexed polymer blend electrolytes for electrochemical cell applications. J Membr Sci 454:200–211

    Article  CAS  Google Scholar 

  93. Rajeh A, Morsi MA, Elashmawi IS (2019) Enhancement of spectroscopic, thermal, electrical and morphological properties of polyethylene oxide/carboxymethyl cellulose blends: combined FT-IR/DFT. Vacuum 159:430–440

    Article  CAS  Google Scholar 

  94. Zha XJ, Pu JH, Ma LF, Li T, Bao RY, Bai L, Liu ZY, Yang MB, Yang W (2018) A particular interfacial strategy in PVDF/OBC/MWCNT nanocomposites for high dielectric performance and electromagnetic interference shielding. Compos Part A 105:118–125

    Article  CAS  Google Scholar 

  95. Li H, Chen Z, Liu L, Chen J, Jiang M, Xiong C (2015) Poly(vinyl pyrrolidone)-coated graphene/poly(vinylidene fluoride) composite films with high dielectric permittivity and low loss. Compos Sci Technol 121:49–55

    Article  CAS  Google Scholar 

  96. Mao F, Shi Z, Wang J, Zhang C, Yang C, Huang M (2018) Improved dielectric permittivity and retained low loss in layer-structured films via controlling interfaces. Adv Compos Hybrid Mater 1:548–557

    Article  Google Scholar 

  97. Zhang X, Zhao S, Wang F, Ma Y, Wang L, Chen D, Zhao C, Yang W (2017) Improving dielectric properties of BaTiO3/poly(vinylidene fluoride) composites by employing core-shell structured BaTiO3@poly(methylmethacrylate) and BaTiO3@poly(trifluoroethyl methacrylate) nanoparticles. Appl Surf Sci 403:71–79

    Article  CAS  Google Scholar 

  98. Zhou W, Gong Y, Tu L, Xu L, Zhao W, Cai J, Zhang Y, Zhou A (2017) Dielectric properties and thermal conductivity of core-shell structured Ni@NiO/poly(vinylidene fluoride) composites. J Alloys Compd 693:1–8

    Article  CAS  Google Scholar 

  99. Bhattacharjee Y, Chatterjee D, Bose S (2018) Core-multishell heterostructure with excellent heat dissipation for electromagnetic interference shielding. ACS Appl Mater Interfaces 10:30762–30773

    Article  CAS  PubMed  Google Scholar 

  100. Zhou W, Xu L, Jiang L, Peng J, Gong Y, Liu X, Cai H, Wang G, Chen Q (2017) Towards suppressing loss tangent: effect of SiO2 coating layer on dielectric properties of core-shell structure flaky cu reinforced PVDF composites. J Alloys Compd 710:47–56

    Article  CAS  Google Scholar 

  101. Yu J, Wu W, Dai D, Song Y, Li C, Jiang N (2014) Crystal structure transformation and dielectric properties of polymer composites incorporating zinc oxide nanorods. Macromol Res 22:19–25

    Article  CAS  Google Scholar 

  102. Rekik H, Ghallabi Z, Royaud I, Arous M, Seytre G, Boiteux G, Kallel A (2013) Dielectric relaxation behaviour in semi-crystalline polyvinylidene fluoride (PVDF)/TiO2 nanocomposites. Compos Part B 45:1199–1206

    Article  CAS  Google Scholar 

  103. Gong Y, Zhou W, Wang Z, Xu L, Kou Y, Cai H, Liu X, Chen Q, Dang ZM (2018) Towards suppressing dielectric loss of GO/PVDF nanocomposites with TA-Fe coordination complexes as an interface layer. J Mater Sci Technol 34:2415–2423

    Article  Google Scholar 

  104. Santos JPF, da Silva AB, Arjmand M, Sundararaj U, Bretas RES (2018) Nanofibers of poly(vinylidene fluoride)/copper nanowire: microstructural analysis and dielectric behavior. Eur Polym J 101:46–55

    Article  CAS  Google Scholar 

  105. Zhou W, Zuo J, Ren W (2012) Thermal conductivity and dielectric properties of Al/PVDF composites. Compos Part A 43:658–664

    Article  CAS  Google Scholar 

  106. Jahan N, Mighri F, Rodrigue D, Ajji A (2018) Synergistic improvement of piezoelectric properties of PVDF/ CaCO3/ montmorillonite hybrid nanocomposites. Appl Clay Sci 152:93–100

    Article  CAS  Google Scholar 

  107. Ketabi S, Lian K (2013) Effect of SiO2 on conductivity and structural properties of PEO–EMIHSO4 polymer electrolyte and enabled solid electrochemical capacitors. Electrochim Acta 103:174–178

    Article  CAS  Google Scholar 

  108. Alghunaim NS, Alhusaiki-Alghamdi HM (2019) Role of ZnO nanoparticles on the structural, optical and dielectric properties of PVP/PC blend. Physica B 560:185–190

    Article  CAS  Google Scholar 

  109. Guan J, Xing C, Wang Y, Li Y, Li J (2017) Poly (vinylidene fluoride) dielectric composites with both ionic nanoclusters and well dispersed graphene oxide. Compos Sci Technol 138:98–105

    Article  CAS  Google Scholar 

  110. Kremer F, Schönhals A (2003) Broadband dielectric spectroscopy. Springer-Verlag, Berlin Heidelberg

    Book  Google Scholar 

  111. He D, Wang Y, Zhang L, Song S, Deng Y (2018) Poly(vinylidene fluoride)-based composites modulated via multiscale two-dimensional fillers for high dielectric performances. Compos Sci Technol 159:162–170

    Article  CAS  Google Scholar 

  112. Halder M, Das AK, Meikap AK (2018) Effect of BiFeO3 nanoparticle on electrical, thermal and magnetic properties of polyvinyl alcohol (PVA) composite film. Mater Res Bull 104:179–187

    Article  CAS  Google Scholar 

  113. Tsonos C, Zois H, Kanapitsas A, Soin N, Siores E, Peppas GD, Pyrgioti EC, Sanida A, Stavropoulos SG, Psarras GC (2019) Polyvinylidene fluoride/magnetite nanocomposites: dielectric and thermal response. J Phys Chem Solids 129:378–386

    Article  CAS  Google Scholar 

  114. Dhatarwal P, Sengwa RJ, Choudhary S (2019) Effectively improved ionic conductivity of montmorillonite clay nanoplatelets incorporated nanocomposite solid polymer electrolytes for lithium ion-conducting devices. SN Appl Sci 1:112

    Article  CAS  Google Scholar 

  115. Yu L, Cebe P (2010) Effect of nanoclay on relaxation of poly(vinylidene fluoride) nanocomposites. J Polym Sci B Polym Phys 47:2520–2532

    Article  CAS  Google Scholar 

Download references

Acknowledgments

One of the authors (RJS) is indebted to the Department of Science and Technology (DST), New Delhi, for providing financial assistance for the experimental facilities through research project No. SR/S2/CMP-09/2002, the DST–FIST program project No. SR/FST/PSI-134/2008, and also to the UGC, New Delhi, through SAP DRS-II program No. F.530/12/DRS-II/2016 (SAP-I). The author (PD) appreciatively acknowledges the award of Postdoctoral Fellowship (Research Associate) from the Council of Scientific and Industrial Research (CSIR), New Delhi. Authors also appreciate Prof. Beer Pal Singh, Department of Physics, CCS University, Meerut, India for extending the SEM facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. J. Sengwa.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dhatarwal, P., Sengwa, R.J. Impact of PVDF/PEO blend composition on the β-phase crystallization and dielectric properties of silica nanoparticles incorporated polymer nanocomposites. J Polym Res 26, 196 (2019). https://doi.org/10.1007/s10965-019-1859-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-019-1859-5

Keywords

Navigation