Skip to main content
Log in

Characterization of amorphous silica nanofiller effect on the structural, morphological, optical, thermal, dielectric and electrical properties of PVA–PVP blend based polymer nanocomposites for their flexible nanodielectric applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The biodegradable polymers blend matrix of poly(vinyl alcohol) (PVA) and poly(vinyl pyrrolidone) (PVP) blend (50/50 wt%) dispersed with amorphous silica (SiO2) nanoparticles based polymer nanocomposite (PNC) films (i.e., (PVA–PVP)–x wt% SiO2; x = 0, 1, 3 and 5) were prepared by the aqueous solution-cast method. These PNC films were characterized by employing the X-ray diffraction, energy dispersive X-ray spectroscopy, scanning electron microscopy, atomic force microscopy, Fourier transform infrared spectroscopy, ultraviolet–visible spectroscopy, differential scanning calorimetry and dielectric relaxation spectroscopy techniques. It is found that the dispersion of nanosize SiO2 particles in the PVA–PVP blend matrix reduces the size of PVA crystallites and, turns the surface morphology from smooth into porous and relatively rough for the PNC films. The SiO2 interaction with polymer structure significantly alters the polymer–polymer interactions, reduces the optical band gap and the glass phase transition temperature, and enhances the melting phase transition temperature of the polymer blend films. The dielectric permittivity of the PNC films initially decreases with the increase of SiO2 contents up to 3 wt%, but at 5 wt% SiO2 concentration it is found nearly same as that of the pristine polymer blend matrix. The ac conductivity of these PNC films increases with the increase of frequency according to the power law relation. The dielectric permittivity exhibits non-linear increase with the increase of temperature of the PNC film whereas its dc conductivity obeys the Arrhenius behaviour. The dielectric and electrical properties of these PNC films realize their suitability as low-permittivity and low loss novel nanodielectrics for the substrate and insulator in the development of various microelectronic and organo-electronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. S. Lee, B. Koo, J. Shin, E. Lee, H.P.H. Kim, Effects of hydroxyl groups in polymeric dielectrics on organic transistor performance. Appl. Phys. Lett. 88, 162109 (2006)

    Google Scholar 

  2. J.S. Choi, Electrical characteristics of organic thin-film transistors with polyvinylpyrrolidone as a gate insulator. J. Inf. Disp. 9, 35–38 (2008)

    Google Scholar 

  3. M. Egginger, M. Irimia-Vladu, R. Schwödiauer, A. Tanda, I. Frischauf, S. Bauer, N.S. Sariciftci, Mobile ionic impurities in poly(vinyl alcohol) gate dielectric: possible source of the hysteresis in organic field-effect transistors. Adv. Mater. 20, 1018–1022 (2008)

    CAS  Google Scholar 

  4. E.A. Van Etten, E.S. Ximenes, L.T. Tarasconi, I.S. Garcia, M.M.C. Forte, H. Boudinov, Insulating characteristics of polyvinyl alcohol for integrated electronics. Thin Solid Films 568, 111–116 (2014)

    Google Scholar 

  5. A. Bahari, M. Shahbazi, Electrical properties of PVP–SiO2–TMSPM hybrid thin films as OFET gate dielectric. J. Electron. Mater. 45, 1201–1209 (2016)

    CAS  Google Scholar 

  6. M.S.P. Reddy, K. Sreenu, V.R. Reddy, C. Park, Modified electrical properties and transport mechanism of Ti/p-InP Schottky structure with a polyvinylpyrrolidone (PVP) polymer interlayer. J. Mater. Sci.: Mater. Electron. 28, 4847–4855 (2017)

    Google Scholar 

  7. F. Xu, H. Zhang, L. Jin, Y. Li, J. Li, G. Gan, M. Wei, M. Li, Y. Liao, Controllably degradable transient electronic antennas based on water-soluble PVA/TiO2 films. J. Mater. Sci. 53, 2638–2647 (2018)

    CAS  Google Scholar 

  8. M. Shahbazi, A. Bahari, S. Ghasemi, Structural and frequency-dependent dielectric properties of PVP-SiO2-TMSPM hybrid thin films. Org. Electron. 32, 100–108 (2016)

    CAS  Google Scholar 

  9. S. Sugumaran, C.S. Bellan, Transparent nano composite PVA–TiO2 and PMMA–TiO2 thin films: optical and dielectric properties. Optik 125, 5128–5133 (2014)

    CAS  Google Scholar 

  10. S. Sinha, S.K. Chatterjee, J. Ghosh, A.K. Meikap, Analysis of the dielectric relaxation and ac conductivity behavior of polyvinyl alcohol-cadmium selenide nanocomposite films. Polym. Compos. 38, 287–298 (2017)

    CAS  Google Scholar 

  11. M. Martin, N. Prasad, M.M. Sivalingam, D. Sastikumar, B. Karthikeyan, Optical, phonon properties of ZnO–PVA, ZnO–GO–PVA nanocomposite free standing polymer films for UV sensing. J. Mater. Sci.: Mater. Electron. 29, 365–373 (2018)

    CAS  Google Scholar 

  12. N. Kinadjian, M.F. Achard, B. Julián-López, M. Maugey, P. Poulin, E. Prouzet, R. Backov, ZnO/PVA macroscopic fibers bearing anisotropic photonic properties. Adv. Funct. Mater. 22, 3994–4003 (2012)

    CAS  Google Scholar 

  13. A.O. Turkey, A. Barhoum, M.M. Rashad, M. Bechlany, Enhanced the structure and optical properties for ZnO/PVP nanofibers fabricated via electrospinning technique. J. Mater. Sci.: Mater. Electron. 28, 17526–17532 (2017)

    Google Scholar 

  14. B. Karthikeyan, T. Pandiyarajan, R.V. Mangalaraja, Enhanced blue light emission in transparent ZnO: PVA nanocomposite free standing polymer films. Spectrochim. Acta A 152, 485–490 (2016)

    CAS  Google Scholar 

  15. T. Pandiyarajan, B. Karthikeyan, Structural, thermal and optical properties of PVP capped ZnO films. Adv. Mater. Res. 678, 253–257 (2013)

    CAS  Google Scholar 

  16. M. Kumar, P. Devi, A. Kumar, Structural analysis of PVP capped silver nanoparticles synthesized at room temperature for optical, electrical and gas sensing properties. J. Mater. Sci.: Mater. Electron. 28, 5014–5020 (2017)

    CAS  Google Scholar 

  17. B. Choudhuri, B. Mondal, S.K. Ray, S.C. Sarkar, A novel biocompatible conducting polyvinyl alcohol (PVA)-polyvinylpyrrolidone (PVP)-hydroxyapatite (HAP) composite scaffolds for probable biological application. Colloids Surf. B 143, 71–80 (2016)

    Google Scholar 

  18. A. Bernal, I. Kuritka, P. Saha, Preparation and characterization of poly(vinyl alcohol) and poly(vinyl pyrrolidone) blend: a biomaterial with latent medical applications. J. Appl. Polym. Sci. 127, 3560–3568 (2013)

    CAS  Google Scholar 

  19. X. Xie, D. Li, T.-H. Tsai, J. Liu, P.V. Braun, D.G. Cahill, Thermal conductivity, heat capacity, and elastic constants of water-soluble polymers and polymer blends. Macromolecules 49, 972–978 (2016)

    CAS  Google Scholar 

  20. S. Mallakpour, M. Khani, Thermal and morphological studies of poly(vinyl alcohol)/poly(vinyl pyrrolidone)/organoclay nanocomposites containing L-leucine moiety. Colloid Polym. Sci. 294, 583–590 (2016)

    CAS  Google Scholar 

  21. I.S. Elashmawi, A.M. Abdelghany, N.A. Hakeem, Quantum confinement effect of CdS nanoparticles dispersed within PVP/PVA nanocomposites. J. Mater. Sci.: Mater. Electron. 24, 2956–2961 (2013)

    CAS  Google Scholar 

  22. D. Rithesh Raj, S. Prasanth, T.V. Vineeshkumar, C. Sudarsanakumar, Ammonia sensing properties of tapered plastic optical fiber coated with silver nanoparticles/PVP/PVA hybrid. Opt. Commun. 340, 86–92 (2015)

    CAS  Google Scholar 

  23. A.S. El-Houssiny, A.A.M. Ward, S.H. Mansour, S.L. Abd-El-Messieh, Biodegradable blends based on polyvinyl pyrrolidone for insulation purposes. J. Appl. Polym. Sci. 124, 3879–3891 (2012)

    CAS  Google Scholar 

  24. M.T. Ramesan, P. Jayakrishnan, T. Anilkumar, G. Mathew, Influence of copper sulphide nanoparticles on the structural, mechanical and dielectric properties of poly(vinyl alcohol)/poly(vinyl pyrrolidone) blend nanocomposites. J. Mater. Sci.: Mater. Electron. 29, 1992–2000 (2018)

    CAS  Google Scholar 

  25. K. Deshmukh, M.B. Ahamed, A.R. Polu, K.K. Sadasivuni, S.K.K. Pasha, D. Ponnamma, M.Al-Ali AlMaadeed, R.R. Deshmukh, K. Chidambaram, Impedance spectroscopy, ionic conductivity and dielectric studies of new Li+ ion conducting polymer blend electrolytes based on biodegradable polymers for solid state battery applications. J. Mater. Sci.: Mater. Electron. 27, 11410–11424 (2016)

    CAS  Google Scholar 

  26. S. Chapi, H. Devendrappa, Optical, electrical, thermal and electrochemical studies of spin-coated polyblend-ZnO nanocomposites. J. Mater. Sci.: Mater. Electron. 27, 11974–11985 (2016)

    CAS  Google Scholar 

  27. E. Tuncer, A.J. Rondinone, J. Woodward, I. Sauers, D.R. James, A.R. Ellis, Cobalt iron-oxide nanoparticle modified poly(methyl methacrylate) nanodielectrics: Dielectric and electrical insulation properties. Appl. Phys. A 94, 843–852 (2009)

    CAS  Google Scholar 

  28. S. Choudhary, R.J. Sengwa, Dielectric dispersion and relaxation studies of melt compounded poly(ethylene oxide)/silicon dioxide nanocomposites. Polym. Bull. 72, 2591–2604 (2015)

    CAS  Google Scholar 

  29. M. Khutia, G.M. Joshi, Dielectric relaxation of PVC/PMMA/NiO blends as a function of DC bias. J. Mater. Sci.: Mater. Electron. 26, 5475–5488 (2015)

    CAS  Google Scholar 

  30. M.S. Gaur, A.P. Indolia, A.A. Rogachev, A.V. Rahachou, Influence of SiO2 nanoparticles on morphological, thermal, and dielectric properties of PVDF. J. Therm. Anal. Calorim. 122, 1403–1416 (2015)

    CAS  Google Scholar 

  31. A. Joseph, G.M. Joshi, High performance of fluoro polymer modified by hexa-titanium boride nanocomposites. J. Mater. Sci.: Mater. Electron. 29, 4749–4769 (2018)

    CAS  Google Scholar 

  32. S. Choudhary, Dielectric dispersion and relaxations in (PVA–PEO)–ZnO polymer nanocomposites. Phys. B 522, 48–56 (2017)

    CAS  Google Scholar 

  33. R.J. Sengwa, S. Choudhary, Dielectric and electrical properties of PEO–Al2O3 nanocomposites. J. Alloys Compd. 701, 652–659 (2017)

    CAS  Google Scholar 

  34. Y. Zhou, J. He, J. Hu, B. Dang, Surface-modified MgO nanoparticle enhances the mechanical and direct-current electrical characteristics of polypropylene/polyolefin elastomer nanodielectrics. J. Appl. Polym. Sci. 133, 42863 (2016)

    Google Scholar 

  35. K. Deshmukh, M.B. Ahamed, K.K. Sadasivuni, D. Ponnamma, M.A.-A. AlMaadeed, R.R. Deshmukh, S.K.K. Pasha, A.R. Polu, K. Chidambaram, Fumed SiO2 nanoparticle reinforced biopolymer blend nanocomposites with high dielectric constant and low dielectric loss for flexible organic electronics. J. Appl. Polym. Sci. 134, 44427 (2017)

    Google Scholar 

  36. A. Luzio, F.G. Ferré, F.D. Fonzo, M. Caironi, Hybrid nanodielectrics for low-voltage organic electronics. Adv. Funct. Mater. 24, 1790–1798 (2014)

    CAS  Google Scholar 

  37. Z.M. Dang, J.K. Yuan, S.H. Yao, R.J. Liao, Flexible nanodielectric materials with high permittivity for power energy storage. Adv. Mater. 25, 6334–6365 (2013)

    CAS  Google Scholar 

  38. Y. Qiao, M.S. Islam, K. Han, E. Leonhardt, J. Zhang, Q. Wang, H.J. Ploehn, C. Tang, Polymers containing highly polarizable conjugated side chains as high-performance all-organic nanodielectric materials. Adv. Funct. Mater. 23, 5638–5646 (2013)

    CAS  Google Scholar 

  39. S. Choudhary, R.J. Sengwa, Morphological, structural, dielectric and electrical properties of PEO–ZnO nanodielectric films. J. Polym. Res. 24, 54 (2017)

    Google Scholar 

  40. S. Choudhary, Characterization of SiO2 nanoparticles dispersed (PVA–PEO) blend based nanocomposites as the polymeric nanodielectric materials. Indian J. Eng. Mater. Sci. 23, 399–410 (2017)

    Google Scholar 

  41. H. Zou, S. Wu, J. Shen, Polymer/silica nanocomposites: preparation, characterization, properties and applications. Chem. Rev. 108, 3893–3957 (2008)

    CAS  Google Scholar 

  42. Z. Peng, L.X. Kong, A thermal degradation mechanism of polyvinyl alcohol/silica nanocomposites. Polym. Degrad. Stab. 92, 1061–1071 (2007)

    CAS  Google Scholar 

  43. C. Wang, J. Wei, B. Xia, X. Chen, B. He, Effect of nano-silica on the mechanical, thermal, and crystalline properties of poly(vinyl alcohol)/nano-silica films. J. Appl. Polym. Sci. 128, 1652–1658 (2013)

    CAS  Google Scholar 

  44. S.J. Lue, S.J. Sheih, Modeling water states in polyvinyl alcohol-fumed silica composites. Polymer 50, 654–661 (2009)

    CAS  Google Scholar 

  45. S. Choudhary, R.J. Sengwa, Anomalous dielectric behaviour of poly(vinyl alcohol)-silicon dioxide (PVA-SiO2) nanocomposites. AIP Conf. Proc. 1728, 020420 (2016)

    Google Scholar 

  46. H. Nakajima, K. Kawano, Preparation and evaluation of the rare earth doped nanoparticle SiO2–PVP hybrid thin film by sol-gel method. J. Alloys Compd. 408–412, 701–705 (2006)

    Google Scholar 

  47. N. Francolon, A. Potdevin, D. Boyer, G. Chadeyron, R. Mahiou, Luminescent PVP/SiO2@YAG:Tb3+ composite films. Ceram. Int. 41, 11272–11278 (2015)

    CAS  Google Scholar 

  48. S.A. Hashemizadeh, Nano organic transistor with SiO2/poly vinylpyrrolidone dielectric. J. Nanostruct. 6, 17–22 (2016)

    CAS  Google Scholar 

  49. A.B. Phatangare, S.D. Dhole, S.S. Dahiwale, V.L. Mathe, S.V. Bhoraskar, D.J. Late, V.N. Bhoraskar, Surface chemical bonds, surface-enhanced Raman scattering, and dielectric constant of SiO2 nanospheres in-situ decorated with Ag-nanoparticles by electron-irradiation. J. Appl. Phys. 120, 234901 (2016)

    Google Scholar 

  50. S. Mallakpour, M. Naghdi, Fabrication and characterization of novel polyvinyl pyrrolidone nanocomposites having SiO2 nanoparticles modified with citric acid and L(+)-ascorbic acid. Polymer 90, 295–301 (2016)

    CAS  Google Scholar 

  51. A. Timin, E. Rumyantsev, S.N. Lanin, S.A. Rychkova, S.S. Guseynov, A.V. Solomonov, E.V. Antina, Preparation and surface properties of mesoporous silica particles modified with poly(N-vinyl-2-pyrrolidone) as a potential adsorbent for bilirubin removal. Mater. Chem. Phys. 147, 673–683 (2014)

    CAS  Google Scholar 

  52. Q. Wei, Y. Zhang, Y. Wang, M. Yang, A molecular dynamic simulation method to elucidate the interaction mechanism of nano-SiO2 in polymer blends. J. Mater. Sci. 52, 12889–12901 (2017)

    CAS  Google Scholar 

  53. R.J. Sengwa, S. Choudhary, Structural characterization of hydrophilic polymer blends/ montmorillonite clay nanocomposites. J. Appl. Polym. Sci. 131, 40617 (2014)

    Google Scholar 

  54. E.M. Abdelrazek, I.S. Elashmawi, S. Labeeb, Chitosan filler effects on the experimental characterization, spectroscopic investigation and thermal studies of PVA/PVP blend films. Phys. B 405, 2021–2027 (2010)

    CAS  Google Scholar 

  55. D.M. Fernandes, A.A. Winkler Hechenleitner, S.M. Lima, L.H.C. Andrade, A.R.L. Caires, E.A. Gómez Pineda, Preparation, characterization, and photoluminescence study of PVA/ZnO nanocomposite films. Mater. Chem. Phys. 128, 371–376 (2011)

    CAS  Google Scholar 

  56. B. Kumar, G. Gaur, S.B. Rai, Sensitized green emission of terbium with dibenzoylmethane and 1, 10 phenanthroline in polyvinyl alcohol and polyvinyl pyrrolidone blends. Spectrochim. Acta A: Mol. Biomol. Spectrosc. 187, 75–81 (2017)

    CAS  Google Scholar 

  57. E.M. Abdelrazek, I.S. Elashmawi, A. El-khodary, A. Yassin, Structural, optical, thermal and electrical studies on PVA/PVP blends filled with lithium bromide. Curr. Appl. Phys. 10, 607–613 (2010)

    Google Scholar 

  58. A.N. Murashkevich, A.S. Lavitskaya, T.I. Barannikova, I.M. Zharskii, Infrared absorption spectra and structure of TiO2–SiO2 composites. J. Appl. Spectrosc. 75, 730–734 (2008)

    CAS  Google Scholar 

  59. C. Heng, M. Liu, K. Wang, F. Deng, H. Huang, Q. Wan, J. Hui, X. Zhang, Y. Wei, Biomimic preparation of highly dispersible silica nanoparticles based polymer nanocomposites. Ceram. Int. 41, 15075–15082 (2015)

    CAS  Google Scholar 

  60. R.K. Nariyal, P. Kothari, B. Bisht, FTIR Measurements of SiO2 glass prepared by sol-gel technique. Chem. Sci. Trans. 3, 1064–1066 (2014)

    Google Scholar 

  61. B.M. Baraker, B. Lobo, Dispersion parameters of cadmium chloride doped PVA–PVP blend films. J. Polym. Res. 24, 84 (2017)

    Google Scholar 

  62. H.M. Ragab, Spectroscopic investigations and electrical properties of PVA/PVP blend filled with different concentration of nickel chloride. Phys. B 406, 3759–3767 (2011)

    CAS  Google Scholar 

  63. S. Mallakpour, A.N. Ezhieh, Polymer nanocomposites based on modified ZrO2 NPs and poly(vinyl alcohol)/poly(vinyl pyrrolidone) blend: optical, morphological, and thermal properties. Polym.-Plast. Technol. Eng. 56, 1136–1145 (2017)

    CAS  Google Scholar 

  64. E.A. Davis, N.F. Mott, Conduction in non-crystalline systems V. Conductivity, optical absorption and photoconductivity in amorphous semiconductors. Philos. Mag. 22, 0903–0922 (1970)

    CAS  Google Scholar 

  65. J. Tauc, Optical properties and electronic structure of amorphous Ge and Si. Mater. Res. Bull. 3, 37–46 (1968)

    CAS  Google Scholar 

  66. G.M. Thutupalli, S.G. Tomlin, The optical properties of thin films of cadmium and zinc selenides and tellurides. J. Phys. D 9, 1639–1646 (1976)

    CAS  Google Scholar 

  67. F. Urbach, The long-wavelength edge of photographic sensitivity and of the electronic absorytion of solids. Phys. Rev. 92, 1324–1324 (1953)

    CAS  Google Scholar 

  68. M.A. Morsi, A.M. Abdelghany, UV-irradiation assisted control of the structural, optical and thermal properties of PEO/PVP blended gold nanoparticles. Mater. Chem. Phys. 201, 100–112 (2017)

    CAS  Google Scholar 

  69. R.J. Sengwa, S. Choudhary, Investigation of correlation between dielectric parameters and nanostructures in aqueous solution grown poly(vinyl alcohol)-montmorillonite clay nanocomposites by dielectric relaxation spectroscopy. Express Polym. Lett. 4, 559–569 (2010)

    CAS  Google Scholar 

  70. S. Choudhary, R.J. Sengwa, Anomalous behaviour of the dielectric and electrical properties of polymeric nanodielectric poly(vinyl alcohol)–titanium dioxide films. J. Appl. Polym. Sci. 134, 44568 (2017)

    Google Scholar 

  71. R.J. Sengwa, S. Choudhary, S. Sankhla, Dielectric properties of montmorillonite clay filled poly(vinyl alcohol)/poly(ethylene oxide) blend nanocomposites. Compos. Sci. Technol. 70, 1621–1627 (2010)

    CAS  Google Scholar 

  72. S. Ketabi, K. Lian, Effect of SiO2 on conductivity and structural properties of PEO–EMIHSO4 polymer electrolyte and enabled solid electrochemical capacitors. Electrochim. Acta 103, 174–178 (2013)

    CAS  Google Scholar 

  73. P. Ilangovan, M.S. Sakvai, A.B. Kottur, Synergistic effect of functionally active methacrylate polymer and ZnO nanoparticles on optical and dielectric properties. Mater. Chem. Phys. 193, 203–211 (2017)

    CAS  Google Scholar 

  74. S. Choudhary, Structural, morphological, thermal, dielectric and electrical properties of alumina nanoparticles filled PVA–PVP blend matrix based polymer nanocomposites. Polym. Compos. (2018). https://doi.org/10.1002/pc.24793

    Article  Google Scholar 

  75. P.S. Mukherjee, A.K. Das, B. Dutta, A.K. Meikap, Role of silver nanotube on conductivity, dielectric permittivity and current voltage characteristics of polyvinyl alcohol-silver nanocomposite film. J. Phys. Chem. Solids 111, 266–273 (2017)

    CAS  Google Scholar 

  76. F.S. Howell, R.A. Bose, P.B. Macedo, C.T. Moynihan, Electrical relaxation in a glass-forming molten salt. J. Phys. Chem. 78, 639–648 (1974)

    CAS  Google Scholar 

  77. N. Rajeswari, S. Selvasekarapandian, S. Karthikeyan, M. Prabu, G. Hirankumar, H. Nithya, C. Sanjeeviraja, Conductivity and dielectric properties of polyvinyl alcohol–polyvinylpyrrolidone poly blend film using non-aqueous medium. J. Non-Cryst. Solids 357, 3751–3756 (2011)

    CAS  Google Scholar 

Download references

Acknowledgements

The author is grateful to Prof. (Dr.) R.J. Sengwa, Department of Physics, Jai Narain Vyas University, Jodhpur, for the constant advice and encouragement during this work, and also thankful to Dr. Sukhvir Singh, Emeritus Scientist, CSIR–NPL, New Delhi, for extending FTIR, UV–Vis and AFM facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shobhna Choudhary.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choudhary, S. Characterization of amorphous silica nanofiller effect on the structural, morphological, optical, thermal, dielectric and electrical properties of PVA–PVP blend based polymer nanocomposites for their flexible nanodielectric applications. J Mater Sci: Mater Electron 29, 10517–10534 (2018). https://doi.org/10.1007/s10854-018-9116-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-9116-y

Navigation