Skip to main content
Log in

Evaluation of graphene nanosheets influence on the physical properties of PVDF/PMMA blend

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

In this work, we report the preparation of PVDF/PMMA/graphene polymer blend nanocomposites via synthesis of PMMA/graphene as a masterbatch through in-situ polymerization. The PMMA/graphene masterbatch compounded with PVDF by solution mixing in different ratios. The compounding was followed by solution casting to form polymer blend nanocomposites. Solution cast films were subjected to thermal treatments at three different temperatures. ATR-FTIR results revealed the specific interaction between PVDF and graphene surface and also increasing the percentage of γ-phase on the surface with rising the annealing temperature. SEM photographs of the top surface of casted films showed visible phase fluctuations with increasing the annealing temperature especially for 70:30 which is induced by graphene sheets in the mixture of PVDF/PMMA. Also, presence of fiber pull-out in the fractured surface of 70:30 was related to the increase in cohesive interface due to existence of PMMA. TGA analysis exposed the improvement in thermal stability of PVDF portion of the mixture due to preferentially adsorption of PVDF chains onto the graphene surface during of the heating. Decreasing in Yong’s modulus was observed with addition of PMMA but presence of strong GNPs retrieve this negative effect and increases the tensile modulus. The melt-rheological studies illustrated the high interaction between PVDF, PMMA, GNPs and different status of dispersion in three different samples. As well, measuring MFI showed that PMMA caused to decline in melt flow of the polymer blend while the addition of graphene compensate it to some extent revealed lubrication effect of GNPs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Vo LT, Giannelis EP (2007) Macromol 40:8271–8276

    Article  CAS  Google Scholar 

  2. Wang J, Li H, Liu J, Duan Y, Jiang S, Yan S (2003) Am Chem Soc 125:1496–1497

    Article  CAS  Google Scholar 

  3. Pramoda K, Mohamed AI, Phang Y, Liu T (2005) Polym In 54:226–232

    CAS  Google Scholar 

  4. Broadhurst MG, Davis GT, Mckinney JE (1978) J Appl Phys 49:4992–4997

    Article  CAS  Google Scholar 

  5. Lee S (ed) (2006) Encyclopedia of chemical processing. Tailor & Francis, London

    Google Scholar 

  6. Mack JJ, Viculis LM, Ali A, Luoh R, Yang G, Thomas Hahn H, Ko FK, Kaner RB (2005) Adv Mater 17:77–80

    Article  CAS  Google Scholar 

  7. Alexander M, Dubios P (2000) Mater Sci Eng 28:1–63

    Article  Google Scholar 

  8. Paul DR, Robeson LM (2008) Polym 49:3187–3204

    Article  CAS  Google Scholar 

  9. Stankovich S, Dikin DA, Dommett GHB, Kohlhaas KM, Zimney EJ, Stach EA, Piner RD (2006) Nature 442:282–286

    Article  CAS  Google Scholar 

  10. Steurer P, Wissert R, Thomann R, Mülhaupt R (2009) Macromol Rapid Commun 30:316–327

    Article  CAS  Google Scholar 

  11. Peigney A, Laurent C, Flahaut E, Basca RR, Rousset A (2001) Carbon 39:507–514

    Article  CAS  Google Scholar 

  12. Fu X, Qutubuddin S (2001) Polym 42:807–813

    Article  CAS  Google Scholar 

  13. Chae HK, Siberio-perez DY, Kim J, Go Y, Eddaoudi M, Matzger AJ, O’Keeffe M, Yaghi OM (2004) Nature 427:523–527

    Article  CAS  Google Scholar 

  14. Alexandre M, Dubois P (2000) Mater Sci Eng 28:1–63

    Article  Google Scholar 

  15. Inagaki M, Kang F, Toyoda M (2004) Chemistry and physics of carbon a series of advances. Radovic LR (ed). NewYork

  16. Moussaif N, Groeninckx G (2003) Polym 44:7899–7906

    Article  CAS  Google Scholar 

  17. Nishi T, Wang TT (1975) Macromol 8:909–915

    Article  CAS  Google Scholar 

  18. Chen G, Weng W, Wu D, Wu C (2003) Eur Polym J 39:2329–2335

    Article  CAS  Google Scholar 

  19. Léonard C, Halary JL, Monnerie L (1988) Macromol 21:2988–2994

    Article  Google Scholar 

  20. Mohamadi S, Sharifi-Sanjani N (2011) J Polym Comp 32:1451–1460

    Article  CAS  Google Scholar 

  21. Gu X, Sung L, Ho DL, Michaels CA, Nguyen T (2006) Appl Sur Sci 252:5168–5171

    Article  CAS  Google Scholar 

  22. Elashmawi IS, Hakeem NA (2008) Polym Eng Sci 48:895–901

    Article  CAS  Google Scholar 

  23. Colemann MM, Painter PC (1995) Prog Polym Sci 20:1–59

    Article  Google Scholar 

  24. Ulaganathan M, Rajendran S (2010) Ionics 16:515–521

    Article  CAS  Google Scholar 

  25. Lanceros-Mendez S, Mano JF, Costa AM, Schmidt VH (2001) J Macromol Sci Phys B40:517–527

    Article  CAS  Google Scholar 

  26. Benz M, Euler WB, Gerory OJ (2002) Macromol 35:2682–2688

    Article  CAS  Google Scholar 

  27. Gregorio R, Souca Nocita NC (1995) J Phys D 28:432–457

    Article  CAS  Google Scholar 

  28. Tashiro K, Kobayahi M, Tadokoro H (1981) Macromole 14:1757–1764

    Article  CAS  Google Scholar 

  29. Itoh Y, Kobayahi M, Tadokoro H (1985) Macromole 18:2600–2606

    Article  Google Scholar 

  30. Park YJ, Kang YS, Park C (2005) Eur Polym J 41:1002–1012

    Article  CAS  Google Scholar 

  31. Wu G, Miura T, Asai S, Sumita M (2001) Polym 42:3271–3279

    Article  CAS  Google Scholar 

  32. Léonard C, Halary JL, Monnerie L, Broussoux D, Servet B, Micheron F (1983) Polym Commun 24:110

    Google Scholar 

  33. Zhang Z, Yang J, Zhang H, Friedrich K (2005) ICF XI—11th International Conference on Fracture

  34. Gilchrist MD, Svensson N (1995) Comp Sci Tech 55:195–207

    Article  CAS  Google Scholar 

  35. Manjunatha CM, Taylor AC, Kinloch AJ, Sprenger S (2010) Comp Sci Tech 70:193–199

    Article  CAS  Google Scholar 

  36. Ramsaroop A, Kanny K, Mohan TP (2010) Mat Sci Appl 1:301–309

    Article  CAS  Google Scholar 

  37. Ramanathan T, Stankovich S, Dikin DA, Liu H, Shen H, Nguyen ST, Brinson LC (2007) J Polym Sci Part B Polym Phys 45:2097–2112

    Article  CAS  Google Scholar 

  38. Afanasov IM, Morozov VA, Kepman AV, Ionov SG, Seleznev AN, Van Tendeloo G, Avdeev VV (2009) Carbon 47:263–270

    Article  CAS  Google Scholar 

  39. Gonćalves G, Marques PAAP, Barros-Timmons A, Bdkin I, Singh MKK, Emami NJ, Grácio J (2010) J Mater Chem 20:9927–9934

    Article  Google Scholar 

  40. El-Hadi A, Schnabel R, Straube E, Müller G, Henning S (2002) Polym Test 21:665–674

    Article  CAS  Google Scholar 

  41. Xu JZ, Liang YY, Huang HD, Zhong GJ, Lei J, Chen C, Li ZM (2012) J Polym Res 19:9975–9982

    Article  Google Scholar 

  42. Galgali G, Ramesh C, Lele A (2001) Macromol 34:852–858

    Article  CAS  Google Scholar 

  43. Chen D, Wang M, Zhang WD, Liu T (2009) J Appl Polym Sci 113:644–650

    Article  CAS  Google Scholar 

  44. Li J, Zhou C, Wang G, Zhao D (2003) J Appl Polym Sci 89:3609–3617

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are thankful to the Research Council of the University of Tehran. The authors would also like to thank Mr. Hashemi at University College of Science, University of Tehran, for SEM image and helpful discussions. We also, gratefully acknowledge the kind assistance from Mr. Hossein Zamani.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Somayeh Mohamadi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mohamadi, S., Sharifi-Sanjani, N. & Foyouhi, A. Evaluation of graphene nanosheets influence on the physical properties of PVDF/PMMA blend. J Polym Res 20, 46 (2013). https://doi.org/10.1007/s10965-012-0046-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-012-0046-8

Keywords

Navigation