Skip to main content
Log in

Effect of the ceramic grain size and concentration on the dynamical mechanical and dielectric behavior of poly(vinilidene fluoride)/Pb(Zr0.53Ti0.47)O3 composites

  • Published:
Applied Physics A Aims and scope Submit manuscript

An Erratum to this article was published on 09 July 2009

Abstract

In this work, poly(vinilidene fluoride)/Pb(Zr0.53Ti0.47)O3([PVDF]1−x /[PZT] x ) composites of volumetric fractions x and (0–3) type connectivity were prepared in the form of thin films. PZT powder of crystallite size of 0.84, 1.68, and 2.35 μm in different amounts of PZT (10, 20, 30, and 40%) was mixed with the polymeric matrix. The crystalline phase of the polymeric matrix was the nonpolar α-phase and the polar β-phase.

Dielectric and dynamic mechanical (DMA) measurements were performed to these composites in order to evaluate the influence of particle size and the amount of PZT filler with respect to the PVDF matrix. The inclusion of ceramic particles in the PVDF polymer matrix increases the complex dielectric constant and dynamical mechanical response of the composites. A similar behavior is observed for the α- or β-phase of the polymeric matrix indicating that the PVDF polymer matrix is not particularly relevant for the composite behavior. On the other hand, ceramic size and especially content play the major role in the increase of the dielectric response and the room temperature storage modulus. In particular, the storage modulus increases with increasing PZT concentration, but this increase is more pronounced, in terms of maximum value, for the sample with 2.35 μm particle size; DMA reveals two main relaxations in the analyzed samples. A low-temperature process maximum at ca. −40°C, usually labeled by β or α a associated to the T g of the polymer and the α-relaxation at temperatures above 30°C. The β-relaxation is also observed in the dielectric measurements.

The models used to asses the dielectric behavior of the samples with increasing PZT concentration indicate that the particle–matrix interaction plays a relevant role, as well as the particle asymmetry and relative orientation, being the Yamada model the most appropriate to describe the composite behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.A. Rogers, J. Intell. Mater. Syst. Struct. 4, 4–12 (1993)

    Article  Google Scholar 

  2. R.E. Newnham, G.R. Ruschau, J. Intell. Mater. Syst. Struct. 4, 289–294 (1993)

    Article  Google Scholar 

  3. A.J. Lovinger, in Developments in Crystalline Polymers, vol. 1, ed. by D.C. Basset (Elsevier, London, 1982)

    Google Scholar 

  4. C.J. Dias, D.K. Das-Gupta, IEEE Trans. Dielectr. Electr. Insulation 3(5), 706–734 (1996)

    Article  Google Scholar 

  5. G.M. Odegard, Acta Mater. 52, 5315–5330 (2004)

    Article  Google Scholar 

  6. R.E. Newnham, D.P. Skinner, L.E. Cross, Mater. Res. Bull. 13, 525–536 (1978)

    Article  Google Scholar 

  7. T. Furukawa, K. Ishida, E. Fukada, J. Appl. Phys. 50(7), 4904–4912 (1979)

    Article  ADS  Google Scholar 

  8. T. Yamada, T. Ueda, T. Kitayama, J. Appl. Phys. 53, 4328–4332 (1982)

    Article  ADS  Google Scholar 

  9. T. Bhimasankaram, S.V. Suryanarama, G. Prasad, Curr. Sci. 74(11), 967–976 (1998)

    Google Scholar 

  10. S.P. Marra, K.T. Ramesh, A.S. Douglas, Compos. Sci. Technol. 59, 2163–2173 (1999)

    Article  Google Scholar 

  11. D.K. Das-Gupta, Ferroelectrics 33, 75–89 (1981)

    Google Scholar 

  12. R. Gregório Jr., M. Cestari, F.E. Bernardino, J. Mater. Sci. 31, 2925–2930 (1996)

    Article  ADS  Google Scholar 

  13. V. Sencadas, S. Lanceros-Mendéz, A.S. Pouzada, R. Gregório Jr., Mater. Sci. Forum 872, 514–516 (2006)

    Google Scholar 

  14. S. Lanceros-Méndez, M.V. Moreira, J.F. Mano, V.H. Schmidt, G. Bohannan, Ferroelectrics 273, 15 (2002)

    Article  Google Scholar 

  15. V. Sencadas, C.M. Costa, V. Moreira, J. Monteiro, S.K. Mendiratta, J.F. Mano, S. Lanceros-Méndez, e-Polymers 002 (2005)

  16. V. Sencadas, R. Gregorio Filho, S. Lanceros-Méndez, J. Non-Cryst. Solids 352(21–22), 2226–2229 (2006)

    Article  ADS  Google Scholar 

  17. R. Gregorio Jr., R.C. Capitão, J. Mater. Sci. 35, 299–306 (2000)

    Article  Google Scholar 

  18. L.E. Cross, Mater. Chem. Phys. 43, 108–115 (1996)

    Article  Google Scholar 

  19. A. Amin, R.E. Newnham, L.E. Cross, D.E. Cox, J. Solid State Chem. 37, 248–255 (1981)

    Article  ADS  Google Scholar 

  20. A. Wu, P.M. Vilarinho, V.V. Shvartsman, G. Suchaneck, A.L. Kholkin, Nanotechnology 16, 2587–2595 (2005)

    Article  ADS  Google Scholar 

  21. C.-W. Nan, Phys. Rev. B 63, 176201 (2001)

    Article  ADS  Google Scholar 

  22. J. Paletto, R. Goutte, L. Eyraud, J. Solid State Chem. 6, 58–66 (1973)

    Article  ADS  Google Scholar 

  23. J.W. Sy, J. Mijovic, Macromolecules 33, 933–946 (2000)

    Article  ADS  Google Scholar 

  24. M. Arous, H. Hammami, M. Lagache, A. Kallel, J. Non-Cryst. Solids 353(47–51), 4428–4431 (2007)

    Article  ADS  Google Scholar 

  25. J.C. Dyre, T.B. Schroder, Rev. Mod. Phys. 72(3), 873–892 (2000)

    Article  ADS  Google Scholar 

  26. J. Mijovic, J.W. Sy, T.K. Kwei, Macromolecules 30, 3042–3050 (1997)

    Article  ADS  Google Scholar 

  27. J.F. Mano, V. Sencadas, A. Mello Costa, S. Lanceros-Méndez, Mater. Sci. Eng. A 370, 336–340 (2004)

    Article  Google Scholar 

  28. A. Linares, J.L. Acosta, Eur. Polym. J. 33, 467–473 (1997)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Lanceros-Méndez.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s00339-009-5323-y

Rights and permissions

Reprints and permissions

About this article

Cite this article

Firmino Mendes, S., Costa, C.M., Sencadas, V. et al. Effect of the ceramic grain size and concentration on the dynamical mechanical and dielectric behavior of poly(vinilidene fluoride)/Pb(Zr0.53Ti0.47)O3 composites. Appl. Phys. A 96, 899–908 (2009). https://doi.org/10.1007/s00339-009-5141-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-009-5141-2

PACS

Navigation