Skip to main content

Advertisement

Log in

Investigation on Structural and Dielectric Properties of Silica Nanoparticles Incorporated Poly(Ethylene Oxide)/Poly(Vinyl Pyrrolidone) Blend Matrix Based Nanocomposites

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Inorganic and organic materials based polymer nanocomposite (PNC) films, comprising silica (SiO2) nanoparticles as inorganic filler and the polymer blend of poly(ethylene oxide) (PEO) and poly(vinyl pyrrolidone) (PVP) as organic matrix (i.e., (PEO–PVP)-x wt% SiO2; x = 0, 1, 3 and 5) have been prepared by the solution-casting method. These PNC films are characterized by employing the scanning electron microscopy (SEM), X-ray diffractometer (XRD), Fourier transform infrared (FTIR) spectroscopy, and the dielectric relaxation spectroscopy (DRS). The effect of SiO2 nanofiller on the spherulite and porous morphology, miscibility of the polymers, PEO crystallite size, the degree of crystallinity, polymer–polymer and polymer-nanoparticle interactions, and from 20 Hz to 1 MHz range dielectric and electrical dispersion behaviour and also the structural dynamics of these PNC materials have been investigated. The porous morphology, structures of miscible phases, and the PEO crystallite length greatly alter with the incorporation of merely 1 wt% SiO2 in the polymer blend matrix which further changes with the increase of nanofiller concentration up to 5 wt%. The real part of complex permittivity over the radio frequency range (20 kHz–1 MHz) for these PNC films is found about 2 and their dielectric loss tangent values below 0.03, at the room temperature, which are significantly low. The contribution of interfacial polarization effect at lower audio frequencies enhances the complex permittivity of these materials linearly in the range 2 to 4 with the decrease of frequency from 1 kHz to 20 Hz confirming their frequency tunable dielectric behaviour. The dielectric study of 3 wt% SiO2 containing PNC film in the temperature range 30–60 °C reveals its thermally activated dielectric characteristics, and the temperature dependent values of dielectric relaxation time and dc electrical conductivity obey the Arrhenius behaviour with activation energies in the range 0.2–0.3 eV. The dielectric and electrical parameters ascertain the promising applications of these PNC films in the development of novel electroactive functional materials, and also their use as the dielectric substrate and electrical insulating polymeric nanodielectrics for the fabrication of flexible-type naturally degradable organoelectronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. A.I. Isayev, Encyclopedia of Polymer Blends (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2013)

    Google Scholar 

  2. L.A. Utracki, C. Wilkie, Polymer Blend Handbook (Springer, The Netherlands, 2014)

    Book  Google Scholar 

  3. S. Thomas, Y. Grohens, P. Jyotishkumar, Characterization of Polymer Blends: Miscibility, Morphology and Interfaces (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2015)

    Google Scholar 

  4. N.N. Sedeh, M. Entezam, S.H. Jafari, H.-A. Khonakdar, M. Abdouss, Morphology, drug release behavior, thermal, and mechanical properties of poly(ethylene oxide) (PEO)/poly(vinyl pyrrolidone) (PVP) blends. J. Appl. Polym. Sci. 135, 46403 (2018)

    Article  CAS  Google Scholar 

  5. R.J. Sengwa, S. Choudhary, S. Sankhla, Dielectric spectroscopy of hydrophilic polymers–montmorillonite clay nanocomposite aqueous colloidal suspension. Coll. Surf. A 336, 79–87 (2009)

    Article  CAS  Google Scholar 

  6. R.J. Sengwa, S. Choudhary, Structural characterization of hydrophilic polymer blends/ montmorillonite clay nanocomposites. J. Appl. Polym. Sci. 131, 40617 (2014)

    Article  CAS  Google Scholar 

  7. M. Ignatova, N. Manolova, I. Rashkov, Electrospinning of poly(vinyl pyrrolidone)–iodine complex and poly(ethylene oxide)/poly(vinyl pyrrolidone)–iodine complex–a prospective route to antimicrobial wound dressing materials. Eur. Polym. J. 43, 1609–1623 (2007)

    Article  CAS  Google Scholar 

  8. K. Kiran Kumar, M. Ravi, Y. Pavani, S. Bhavani, A.K. Sharma, V.V.R. Narasimha Rao, Electrical conduction mechanism in NaCl complexes PEO/PVP polymer blend electrolytes. J. Non Cryst. Solids 358, 3205–3211 (2012)

    Article  CAS  Google Scholar 

  9. K. Kiran Kumar, M. Ravi, Y. Pavani, S. Bhavani, A.K. Sharma, V.V.R. Narasimha, Rao, Investigations on PEO/PVP/NaBr complexed polymer blend electrolytes for electrochemical cell applications. J. Membr. Sci. 454, 200–211 (2014)

    Article  CAS  Google Scholar 

  10. H.M. Ragab, F. Ahmad, Sh.N. Radwan, Change spectroscopic studies and optimization electrical properties of PVP/PEO doped copper pthalocyanines. Phys. B 502, 97–102 (2016)

    Article  CAS  Google Scholar 

  11. A.M. Abdelghany, E.M. Abdelrazek, S.I. Badr, M.A. Morsi, Effect of gamma-irradiation on (PEO/PVP)/Au nanocomposite: Materials for electrochemical and optical applications. Mater. Des. 97, 532–543 (2016)

    Article  CAS  Google Scholar 

  12. K. Naveen Kumar, M. Kang, G.B. Kumar, Y.C. Ratnakaram, Energy transfer based photoluminescence properties of (Er3+ + Pr3+): PEO + PVP blended polymer composites for photonic applications. Opt. Mater. 54, 6–13 (2016)

    Article  CAS  Google Scholar 

  13. M.A. Morsi, A.M. Abdelghany, UV-irradiation assisted control of the structural, optical and thermal properties of PEO/PVP blended gold nanoparticles. Mater. Chem. Phys. 201, 100–112 (2017)

    Article  CAS  Google Scholar 

  14. B. Jinisha, K.M. Anilkumar, M. Manoj, V.S. Pradeep, S. Jayalekshmi, Development of a novel type of solid polymer electrolyte for solid state lithium battery applications based on lithium enriched poly(ethylene oxide) (PEO)/poly(vinyl pyrrolidone) (PVP) blend polymer. Electrochim. Acta 235, 210–222 (2017)

    Article  CAS  Google Scholar 

  15. X. Huang, C. Zhi, Polymer Nanocomposites (Springer International Publishing, Switzerland, 2016)

    Google Scholar 

  16. P. Maji, R.B. Choudhary, M. Majhi, Structural, optical and dielectric properties of ZrO2 reinforced polymeric nanocomposite films of polymethylmethacrylate (PMMA). Optik 127, 4848–4853 (2016)

    Article  CAS  Google Scholar 

  17. S. Choudhary, R.J. Sengwa, ZnO nanoparticles dispersed PVA–PVP blend matrix based high performance flexible nanodielectrics for multifunctional microelectronic devices. Curr. Appl. Phys. 18, 1041–1058 (2018)

    Article  Google Scholar 

  18. G. Wu, S. Guo, Y. Yin, G. Sun, Y. Zhong, B. You, Hollow microspheres of SiO2/PMMA nanocomposites: preparation and their application in light diffusing films. J. Inorg. Organomet. Polym Mater. 28, 2701–2713 (2018)

    Article  CAS  Google Scholar 

  19. Z.M. Dang, J.K. Yuan, S.H. Yao, R.J. Liao, Flexible nanodielectric materials with high permittivity for power energy storage. Adv. Mater. 25, 6334–6365 (2013)

    Article  CAS  PubMed  Google Scholar 

  20. Y. Qiao, M.S. Islam, K. Han, E. Leonhardt, J. Zhang, Q. Wang, H.J. Ploehn, C. Tang, Polymers containing highly polarizable conjugated side chains as high-performance all-organic nanodielectric materials. Adv. Funct. Mater. 23, 5638–5646 (2013)

    Article  CAS  Google Scholar 

  21. A. Luzio, F.G. Ferré, F.D. Fonzo, M. Caironi, Hybrid nanodielectrics for low-voltage organic electronics. Adv. Funct. Mater. 24, 1790–1798 (2014)

    Article  CAS  Google Scholar 

  22. Prateek, V.K. Thakur, R.K. Gupta, Recent progress on ferroelectric polymer-based nanocomposites for high energy density capacitors: synthesis, dielectric properties, and future aspects. Chem. Rev. 116, 4260–4317 (2016)

    Article  CAS  PubMed  Google Scholar 

  23. T. Tanaka, A.S. Vaughan, Tailoring of nanocomposite dielectrics: from fundamentals to devices and applications (Temasek Boulevard, Pan Stanford Publishing Pte. Ltd., Singapore, 2017)

    Google Scholar 

  24. J. Anandraj, G.M. Joshi, Fabrication, performance and applications of integrated nanodielectric properties of materials—a review, Compos. Interfaces 25, 455–489 (2018)

    Google Scholar 

  25. G. Polizos, E. Tuncer, V. Tomer, I. Sauers, C.A. Randall, E. Manias, Dielectric spectroscopy of polymer-based nanocomposite dielectrics with tailored interfaces and structured spatial distribution of fillers, in Nanoscale Spectroscopy with Applications, ed. by S.M. Musa (CRC Press, Taylor & Francis Group, Boca Raton, FL, 2013)

    Google Scholar 

  26. S. Choudhary, R.J. Sengwa, Effects of different inorganic nanoparticles on the structural, dielectric and ion transportation properties of polymers blend based nanocomposite solid polymer electrolytes. Electrochim. Acta 247, 924–941 (2017)

    Article  CAS  Google Scholar 

  27. T.P. Nguyen, Polymer-based nanocomposites for organic optoelectronic devices. A review. Surf. Coat. Technol. 206, 742–752 (2011)

    Article  CAS  Google Scholar 

  28. A. Hashim, Q. Hadi, Synthesis of novel (polymer blend-ceramics) nanocomposites: structural, optical and electrical properties for humidity sensors. J. Inorg. Organomet. Polym Mater. 28, 1394–1401 (2018)

    Article  CAS  Google Scholar 

  29. F. Xu, H. Zhang, L. Jin, Y. Li, J. Li, G. Gan, M. Wei, M. Li, Y. Liao, Controllably degradable transient electronic antennas based on water-soluble PVA/TiO2 films. J. Mater. Sci. 53, 2638–2647 (2018)

    Article  CAS  Google Scholar 

  30. R. Kaur, J. Singh, S.K. Tripathi, Incorporation of inorganic nanoparticles into an organic polymer matrix for data storage application. Curr. Appl. Phys. 17, 756–762 (2017)

    Article  Google Scholar 

  31. Z. Pan, L. Yao, J. Zhai, B. Shen, H. Wang, Significantly improved dielectric properties and energy density of polymer nanocomposites via small loaded of BaTiO3 nanotubes. Compos. Sci. Technol. 147, 30–38 (2017)

    Article  CAS  Google Scholar 

  32. A. Bouzidi, K. Omri, W. Jilani, H. Guermazi, I.S. Yahia, Influence of TiO2 incorporation on the microstructure, optical, and dielectric properties of TiO2/epoxy composites. J. Inorg. Organomet. Polym. Mater. 28, 1114–1126 (2018)

    Article  CAS  Google Scholar 

  33. R.J. Sengwa, S. Choudhary, S. Sankhla, Dielectric properties of montmorillonite clay filled poly(vinyl alcohol)/poly(ethylene oxide) blend nanocomposites. Comps. Sci. Tech. 70, 1621–1627 (2010)

    Article  CAS  Google Scholar 

  34. S. Choudhary, R.J. Sengwa, Dielectric dispersion and relaxation studies of melt compounded poly(ethylene oxide)/silicon dioxide nanocomposites. Polym. Bull. 72, 2591–2604 (2015)

    Article  CAS  Google Scholar 

  35. S. Choudhary, R.J. Sengwa, Anomalous behaviour of the dielectric and electrical properties of polymeric nanodielectric poly(vinyl alcohol)–titanium dioxide films. J. Appl. Polym. Sci. 134, 44568 (2017)

    Article  CAS  Google Scholar 

  36. S. Choudhary, R.J. Sengwa, Morphological, structural, dielectric and electrical properties of PEO–ZnO nanodielectric films. J. Polym. Res. 24, 54 (2017)

    Article  CAS  Google Scholar 

  37. S. Choudhary, Dielectric dispersion and relaxations in (PVA–PEO)–ZnO polymer nanocomposites. Phys. B 522, 48–56 (2017)

    Article  CAS  Google Scholar 

  38. S. Choudhary, Structural, morphological, thermal, dielectric, and electrical properties of alumina nanoparticles filled PVA–PVP blend matrix-based polymer nanocomposites. Polym. Compos. 39, E1788–E1799 (2018)

    Article  CAS  Google Scholar 

  39. S. Choudhary, Characterization of amorphous silica nanofiller effect on the structural, morphological, optical, thermal, dielectric and electrical properties of PVA–PVP blend based polymer nanocomposites for their flexible nanodielectric applications. J. Mater. Sci. Mater. Electron. 29, 10517–10534 (2018)

    Article  CAS  Google Scholar 

  40. S. Choudhary, Effects of amorphous silica nanoparticles and polymer blend compositions on the structural, thermal and dielectric properties of PEO–PMMA blend based polymer nanocomposites. J. Polym. Res. 25, 116 (2018) (2018)

    Article  CAS  Google Scholar 

  41. R.J. Sengwa, S. Choudhary, Dielectric and electrical properties of PEO–Al2O3 nanocomposites. J. Alloys Compd. 701, 652–659 (2017)

    Article  CAS  Google Scholar 

  42. S. Choudhary, Structural, optical, dielectric and electrical properties of (PEO–PVP)–ZnO nanocomposites. J. Phys. Chem. Solids 121, 196–209 (2018)

    Article  CAS  Google Scholar 

  43. H. Zhou, S. Wu, J. Shen, Polymer/silica nanocomposites: preparation, characterization, properties and applications. Chem. Rev. 108, 3893–3957 (2008)

    Article  CAS  Google Scholar 

  44. K. Deshmukh, M.B. Ahamed, K.K. Sadasivuni, D. Ponnamma, M. Al-Ali AlMaadeed, R.R. Deshmukh, S.K.K. Pasha, A.R. Polu, K. Chidambaram, Fumed SiO2 nanoparticle reinforced biopolymer blend nanocomposites with high dielectric constant and low dielectric loss for flexible organic electronics. J. Appl. Polym. Sci. 134, 44427 (3017)

  45. Q. Wei, Y. Zhang, Y. Wang, M. Yang, A molecular dynamic simulation method to elucidate the interaction mechanism of nano-SiO2 in polymer blends. J. Mater. Sci. 52, 12889–12901 (2017)

    Article  CAS  Google Scholar 

  46. V. Mentlik, O. Michal, Influence of SiO2 nanoparticles and nanofibrous filler on the dielectric properties of epoxy-based composites. Mater. Lett. 223, 41–44 (2018)

    Article  CAS  Google Scholar 

  47. W. Zhao, Y. Su, A.J. Müller, X. Gao, D. Wang, Direct relationship between interfacial microstructure and confined crystallization in poly(ethylene oxide)/silica composites: the study of polymer molecular weight effects. J. Polym. Sci. B 55, 1608–1616 (2017)

    Article  CAS  Google Scholar 

  48. C. Xing, M. Zhao, L. Zhao, J. You, X. Cao, Y. Li, Ionic liquid modified poly(vinylidene fluoride): crystalline structures, miscibility, and physical properties. Polym. Chem. 4, 5726–5734 (2013)

    Article  CAS  Google Scholar 

  49. I.S. Elashmawi, N.H. Elsayed, F.A. Altalhi, The changes of spectroscopic, thermal and electrical properties of PVDF/PEO containing lithium nanoparticles. J. Alloys Compd. 617, 877–883 (2014)

    Article  CAS  Google Scholar 

  50. R. Rathika, O. Padmaraj, S.A. Suthanthiraraj, Electrical conductivity and dielectric relaxation behaviour of PEO/PVDF-based solid polymer blend electrolytes for zinc battery applications. Ionics 24, 243–255 (2018)

    Article  CAS  Google Scholar 

  51. S. Botsi, C. Tsamis, M. Chatzichristidi, G. Papageorgiou, E. Makarona, Facile and cost-efficient development of PMMA-based nanocomposites with custom-made hydrothermally-synthesized ZnO nanofillers. Nano Struct. Nano Objects 17, 7–20 (2019)

    Article  CAS  Google Scholar 

  52. M.N. Tamaňo-Machiavello, C.M. Costa, F.J. Romero-Colomer, J.M.M. Dueňas, S. Lanceros-Mendez, J.L.G. Ribelles, Crystallization kinetics of poly(ethylene oxide) confined in semicrystalline poly(vinylidene) fluoride. J. Polym. Sci. Polym. Phys. 56, 588–597 (2018)

    Article  CAS  Google Scholar 

  53. N. An, H. Liu, Y. Ding, M. Zhang, Y. Tang, Preparation and electroactive properties of a PVDF/nano-TiO2 composite film. Appl. Surf. Sci. 257, 3831–3835 (2011)

    Article  CAS  Google Scholar 

  54. Z. Wang, T. Wang, Y. Xiao, W. Nian, H. Chen, High energy storage density of poly(vinylidene fluoride) bulk nanocomposites at low electric field induced by giant dielectric constant ceramic nanopowders. Ceram. Int. 44, S181–S185 (2018)

    Article  CAS  Google Scholar 

  55. C.L. Yang, Z.H. Li, W.J. Li, H.Y. Liu, Q.Z. Xiao, G.T. Lei, Y.H. Ding, Batwing-like polymer membrane consisting of PMMA-grafted electrospun PVdF-SiO2 nanocomposite fibers for lithium-ion batteries. J. Membr. Sci. 495, 341–350 (2015)

    Article  CAS  Google Scholar 

  56. S. Choudhary, Structural and dielectric properties of (PEO–PMMA)–SnO2 nanocomposites. Compos. Commun. 5, 54–63 (2017)

    Article  Google Scholar 

  57. V. Jollet, F. Chambon, F. Rataboul, A. Cabiac, C. Pinel, E. Guillon, N. Essayem, Non-catalyzed and Pt/γ-Al2O3-catalyzed hydrothermal cellulose dissolution–conversion: influence of the reaction parameters and analysis of the unreacted cellulose. Green Chem. 11, 2052–2060 (2009)

    Article  CAS  Google Scholar 

  58. C. Heng, M. Liu, K. Wang, F. Deng, H. Huang, Q. Wan, J. Hui, X. Zhang, Y. Wei, Biomimic preparation of highly dispersible silica nanoparticles based polymer nanocomposites. Ceram. Int. 41, 15075–15082 (2015)

    Article  CAS  Google Scholar 

  59. S.R.A. Karim, L.H. Sim, C.H. Chan, H. Ramli, On thermal and spectroscopic studies of poly(ethylene oxide)/poly(methyl methacrylate) blends with lithium perchlorate. Macromol. Symp. 354, 374–383 (2015)

    Article  CAS  Google Scholar 

  60. C. Huang, L. Zhang, Miscibility of poly(vinylidene fluoride) and atactic poly(methyl methacrylate). J. Appl. Polym. Sci. 92, 1–5 (2004)

    Article  CAS  Google Scholar 

  61. M.T. Ramesan, P. Jayakrishnan, T. Anilkumar, G. Mathew,, Influence of copper sulphide nanoparticles on the structural, mechanical and dielectric properties of poly(vinyl alcohol)/poly(vinyl pyrrolidone) blend nanocomposites. J. Mater. Sci. 29, 1992–2000 (2018)

    CAS  Google Scholar 

  62. M.S. Gaur, A.P. Indolia, A.A. Rogachev, A.V. Rahachou, Influence of SiO2 nanoparticles on morphological, thermal, and dielectric properties of PVDF. J. Therm. Anal. Calorim. 122, 1403–1416 (2015)

    Article  CAS  Google Scholar 

  63. Z. Liu, F. Wang, H. Zhu, Enhanced dielectric properties of poly vinylidene fluoride with addition of SnO2 nanoparticles. Phys. Status Solidi RRL 10, 753–756 (2016)

    Article  CAS  Google Scholar 

  64. S. Javadi, M. Razzaghi-Kashani, P.N.B. Reis, A.A. Balado, Interfacial effects on dielectric properties of polymethylmethacrylate-titania microcomposites and nanocomposites. Polym. Compos. 38, 1158–1166 (2017)

    Article  CAS  Google Scholar 

  65. F. Mao, Z. Shi, J. Wang, C. Zhang, C. Yang, M. Huang, Improved dielectric permittivity and retained low loss in layer-structured films via controlling interfaces. Adv. Compos. Hybrid Mater. 1, 548–557 (2018)

    Article  Google Scholar 

  66. K. Deshmukh, M.B. Ahamed, R.R. Deshmukh, S.K.K. Pasha, K.K. Sadasivuni, A.R. Polu, D. Ponnamma, M.A.A. AlMaadeed, K. Chidambaram, Newly developed biodegradable polymer nanocomposites of cellulose acetate and Al2O3 nanoparticles with enhanced dielectric performance for embedded passive applications. J. Mater. Sci. Mater. Electron. 28, 973–986 (2017)

    Article  CAS  Google Scholar 

  67. E. Dhanumalayan, G.M. Joshi, High performance thermoplastic blends modified by potassium hexatitanate for dielectric applications. J. Inorg. Organomet. Polym. Mater. 28, 1775–1786 (2018)

    Article  CAS  Google Scholar 

  68. P. Maji, R.B. Choudhary, M. Majhi, Polymeric phase change nanocomposite (PMMA/Fe:ZnO) for electronic packaging application. Appl. Phys. A 124, 70 (2018)

    Article  CAS  Google Scholar 

  69. P. Jayakrishnan, M.T. Ramesan, Synthesis, characterization, electrical conductivity and material properties of magnetite/polyindole/poly(vinyl alcohol) blend nanocomposites. J. Inorg. Organomet. Polym. Mater. 27, 323–333 (2017)

    Article  CAS  Google Scholar 

  70. A. Uğur Kaya, S. Güner, K. Esmer, Effects of solution mixing temperature on dielectric properties of PMMA/pristine bentonite nanocomposites. J. Appl. Polym. Sci. 131, 39907 (2014)

    Article  Google Scholar 

  71. S. Ketabi, K. Lian, Effect of SiO2 on conductivity and structural properties of PEO–EMIHSO4 polymer electrolyte and enabled solid electrochemical capacitors. Electrochim. Acta 103, 174–178 (2013)

    Article  CAS  Google Scholar 

  72. J. Yuan, S. Yao, P. Poulin, Dielectric constant of polymer composites and the routes to high-k or low-k nanocomposite materials, in Polymer Nanocomposites, ed. by X. Huang, C. Zhi (Springer International Publishing, Switzerland, 2016)

    Google Scholar 

  73. P.S. Mukherjee, A.K. Das, B. Dutta, A.K. Meikap, Role of silver nanotube on conductivity, dielectric permittivity and current voltage characteristics of polyvinyl alcohol-silver nanocomposite film. J. Phys. Chem. Solids 111, 266–273 (2017)

    Article  CAS  Google Scholar 

  74. J. Anandraj, G.M. Joshi, Zirconia sulphate dispersed polymer composites for electronic applications. J. Inorg. Organomet. Polym. Mater. 27, 1835–1850 (2017)

    Article  CAS  Google Scholar 

  75. K. Deshmukh, M.B. Ahamed, K.K. Sadasivuni, D. Ponnamma, R.R. Deshmukh, S.K.K. Pasha, M.A.A. AlMaadeed, K. Chidambaram, Graphene oxide reinforced polyvinyl alcohol/polyethylene glycol blend composites as high-performance dielectric material. J. Polym. Res. 23, 159 (2016)

    Article  CAS  Google Scholar 

  76. G.N. Mathioudakis, A.C. Patsidis, G.C. Psarras, Dynamic electrical thermal analysis on zinc oxide/epoxy resin nanodielectrics. J. Therm. Anal. Calorim. 116, 27–33 (2014)

    Article  CAS  Google Scholar 

  77. R.J. Sengwa, P. Dhatarwal, S. Choudhary, Role of preparation methods on the structural and dielectric properties of plasticized polymer blend electrolytes: Correlation between ionic conductivity and dielectric parameters. Electrochim. Acta 142, 359–370 (2014)

    Article  CAS  Google Scholar 

  78. R.J. Sengwa, P. Dhatarwal, S. Choudhary, Effects of plasticizer and nanofiller on the dielectric dispersion and relaxation behaviour of polymer blend based solid polymer electrolytes. Curr. Appl. Phys. 15, 135–143 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

Authors are thankful to Dr. Sukhvir Singh, Emeritus Scientist, CSIR–NPL, New Delhi, for extending FTIR facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. J. Sengwa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choudhary, S., Sengwa, R.J. Investigation on Structural and Dielectric Properties of Silica Nanoparticles Incorporated Poly(Ethylene Oxide)/Poly(Vinyl Pyrrolidone) Blend Matrix Based Nanocomposites. J Inorg Organomet Polym 29, 592–607 (2019). https://doi.org/10.1007/s10904-018-1034-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-018-1034-1

Keywords

Navigation