Skip to main content
Log in

A Runge–Kutta type crowded in phase algorithm for quantum chemistry problems

  • Original Paper
  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

We focus the study presented in this paper on the solution of systems of differential equations with applications in Quantum Chemistry using finite difference methods. The research of the newly introduced algorithm proves its efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. A.C. Allison, The numerical solution of coupled differential equations arising from the Schrödinger equation. J. Comput. Phys. 6, 378–391 (1970)

    Article  Google Scholar 

  2. Mu Kenan, T.E. Simos, A Runge–Kutta type implicit high algebraic order two-step method with vanished phase-lag and its first, second, third and fourth derivatives for the numerical solution of coupled differential equations arising from the Schrödinger equation. J. Math. Chem. 53, 1239–1256 (2015)

    Article  CAS  Google Scholar 

  3. M. Liang, T.E. Simos, A new four stages symmetric two-step method with vanished phase-lag and its first derivative for the numerical integration of the Schrödinger equation. J. Math. Chem. 54(5), 1187–1211 (2016)

    Article  CAS  Google Scholar 

  4. X. Xi, T.E. Simos, A new high algebraic order four stages symmetric two-step method with vanished phase-lag and its first and second derivatives for the numerical solution of the Schrödinger equation and related problems. J. Math. Chem. 54(7), 1417–1439 (2016)

    Article  CAS  Google Scholar 

  5. F. Hui, T.E. Simos, Hybrid high algebraic order two-step method with vanished phase-lag and its first and second derivatives. MATCH Commun. Math. Comput. Chem. 73, 619–648 (2015)

    Google Scholar 

  6. Z. Zhou, T.E. Simos, A new two stage symmetric two-step method with vanished phase-lag and its first, second, third and fourth derivatives for the numerical solution of the radial Schrödinger equation. J. Math. Chem. 54, 442–465 (2016)

    Article  CAS  Google Scholar 

  7. F. Hui, T.E. Simos, Four Stages symmetric two-step P-stable method with vanished phase-lag and its first, second, third and fourth derivatives. Appl. Comput. Math. 15(2), 220–238 (2016)

    Google Scholar 

  8. W. Zhang, T.E. Simos, A high-order two-step phase-fitted method for the numerical solution of the Schrödinger equation. Mediterr. J. Math. 13(6), 5177–5194 (2016)

    Article  Google Scholar 

  9. L. Zhang, T.E. Simos, An efficient numerical method for the solution of the Schrödinger equation, Adv. Math. Phys. 2016 Article ID 8181927, 20 p., https://doi.org/10.1155/2016/8181927

  10. D. Ming, T.E. Simos, A new high algebraic order efficient finite difference method for the solution of the Schrödinger equation. Filomat 31(15), 4999–5012 (2017)

    Article  Google Scholar 

  11. R. Lin, T.E. Simos, A two-step method with vanished phase-lag and its derivatives for the numerical solution of the Schrödinger equation. Open Phys. 14, 628–642 (2016)

    Article  Google Scholar 

  12. H. Ning, T.E. Simos, A low computational cost eight algebraic order hybrid method with vanished phase-lag and its first, second, third and fourth derivatives for the approximate solution of the Schrödinger equation. J. Math. Chem. 53(6), 1295–1312 (2015)

    Article  CAS  Google Scholar 

  13. Z. Wang, T.E. Simos, An economical eighth-order method for the approximation of the solution of the Schrödinger equation. J. Math. Chem. 55, 717–733 (2017)

    Article  CAS  Google Scholar 

  14. J. Ma, T.E. Simos, An efficient and computational effective method for second order problems. J. Math. Chem. 55, 1649–1668 (2017)

    Article  CAS  Google Scholar 

  15. L. Yang, T.E. Simos, An efficient and economical high order method for the numerical approximation of the Schrödinger equation. J. Math. Chem. 55(9), 1755–1778 (2017)

    Article  CAS  Google Scholar 

  16. V.N. Kovalnogov, R.V. Fedorov, V.M. Golovanov, B.M. Kostishko, T.E. Simos, A four stages numerical pair with optimal phase and stability properties. J. Math. Chem. 56(1), 81–102 (2018)

    Article  CAS  Google Scholar 

  17. K. Yan, T.E. Simos, A finite difference pair with improved phase and stability properties, J. Math. Chem., in press

  18. J. Fang, C. Liu, T.E. Simos, A hybric finite difference pair with maximum phase and stability properties, J. Math. Chem., in press

  19. J. Yao, T.E. Simos, New finite difference pair with optimized phase and stability properties. J. Math. Chem. 56(2), 449–476 (2018)

    Article  CAS  Google Scholar 

  20. J. Zheng, C. Liu, T.E. Simos, A new two-step finite difference pair with optimal properties. J. Math. Chem. 56(3), 770–798 (2018)

    Article  CAS  Google Scholar 

  21. X. Shi, T.E. Simos, New five-stages finite difference pair with optimized phase properties, J. Math. Chem., in press - online first

  22. C. Liu, T.E. Simos, A five-stages symmetric method with improved phase properties. J. Math. Chem., in press - online first

  23. J. Yao, T.E. Simos, New five-stages two-step method with improved characteristics, J. Math. Chem., to appear

  24. K. Yan, T.E. Simos, New Runge–Kutta type symmetric two-step method with optimized characteristics, J. Math. Chem., in press - online first

  25. Z. Chen, C. Liu, T.E. Simos, New three-stages symmetric two step method with improved properties for second order initial/boundary value problems. J. Math. Chem. 56(9), 2591–2616 (2018)

    Article  CAS  Google Scholar 

  26. R. Hao, T.E. Simos, New Runge–Kutta type symmetric two step finite difference pair with improved properties for second order initial and/or boundary value problems. J. Math. Chem. 56(10), 3014–3044 (2018)

    Article  CAS  Google Scholar 

  27. G.-H. Qiu, C. Liu, T.E. Simos, A new multistep method with optimized characteristics for initial and/or boundary value problems. J. Math. Chem. 57(1), 119–148 (2019)

    Article  CAS  Google Scholar 

  28. Th Monovasilis, Z. Kalogiratou, T.E. Simos, Trigonometrical fitting conditions for two derivative Runge–Kutta methods. Numer. Algorithms 79, 787–800 (2018)

    Article  Google Scholar 

  29. G. Wang, T.E. Simos, New multiple stages two-step complete in phase algorithm with improved characteristics for second order initial/boundary value problems. J. Math. Chem. 57(2), 494–515 (2019)

    Article  CAS  Google Scholar 

  30. N. Yang, T.E. Simos, New four stages multistep in phase algorithm with best possible properties for second order problems, J. Math. Chem., in press

  31. F. Hui, T.E. Simos, New multistage two-step complete in phase scheme with improved properties for quantum chemistry problems, J. Math. Chem., to appear

  32. V.N. Kovalnogov, R.V. Fedorov, D.V. Suranov, T.E. Simos, Newmultiple stages scheme with improved properties for second order problems. J. Math. Chem. 57(1), 232–262 (2019)

    Article  CAS  Google Scholar 

  33. Z. Chen, C. Liu, C.-W. Hsu, T.E. Simos, A new multistage multistep full in phase algorithm with optimized characteristics for problems in chemistry, J. Math. Chem., to appear

  34. V.N. Kovalnogov, R.V. Fedorov, A.A. Bondarenko, T.E. Simos, New hybrid two-step method with optimized phase and stability characteristics. J. Math. Chem. 56(8), 2302–2340 (2018)

    Article  CAS  Google Scholar 

  35. V.N. Kovalnogov, R.V. Fedorov, T.E. Simos, New hybrid symmetric two step scheme with optimized characteristics for second order problems. J. Math. Chem. 56(9), 2816–2844 (2018)

    Article  CAS  Google Scholar 

  36. C.J. Cramer, Essentials of Computational Chemistry (Wiley, Chichester, 2004)

    Google Scholar 

  37. F. Jensen, Introduction to Computational Chemistry (Wiley, Chichester, 2007)

    Google Scholar 

  38. A.R. Leach, Molecular Modelling: Principles and Applications (Pearson, Essex, 2001)

    Google Scholar 

  39. P. Atkins, R. Friedman, Molecular Quantum Mechanics (Oxford University Press, Oxford, 2011)

    Google Scholar 

  40. V.N. Kovalnogov, T.E. Simos, V.N. Kovalnogov, I.V. Shevchuk, Perspective of mathematical modeling and research of targeted formation of disperse phase clusters in working media for the next-generation power engineering technologies. AIP Conf. Proc. 1863, 560099 (2017)

    Article  CAS  Google Scholar 

  41. V.N. Kovalnogov, R.V. Fedorov, D.A. Generalov, Y.A. Khakhalev, A.N. Zolotov, Numerical research of turbulent boundary layer based on the fractal dimension of pressure fluctuations. AIP Conf. Proc. 738, 480004 (2016)

    Article  Google Scholar 

  42. V.N. Kovalnogov, R.V. Fedorov, T.V. Karpukhina, E.V. Tsvetova, Numerical analysis of the temperature stratification of the disperse flow. AIP Conf. Proc. 1648, 850033 (2015)

    Article  Google Scholar 

  43. C. Liu, C.-W. Hsu, T.E. Simos, Ch. Tsitouras, Phase-fitted, six-step methods for solving \(x^{\prime \prime }=f(t, x)\). Math. Methods Appl. Sci. 42(11), 3942–3949 (2019)

    Article  Google Scholar 

  44. Z. Kalogiratou, Th Monovasilis, T.E. Simos, New fifth order Two-Derivative Runge-Kutta methods with constant and frequency dependent coefficients. Math. Methods Appl. Sci. 42(6), 1955–1966 (2019)

    Article  Google Scholar 

  45. Stefan Kottwitz, LaTeX Cookbook (Packt Publishing Ltd., Birmingham, 2015), pp. 231–236

    Google Scholar 

  46. M. Xu, T.E. Simos, A multistage two-step fraught in phase scheme for problems in mathematical chemistry, J. Math. Chem. in press

  47. T.E. Simos, P.S. Williams, A finite difference method for the numerical solution of the Schrödinger equation. J. Comput. Appl. Math. 79, 189–205 (1997)

    Article  Google Scholar 

  48. Maxim A. Medvedev, T.E. Simos, A three-stages multistep teeming in phase algorithm for computational problems in chemistry. J. Math. Chem. 57(6), 1598–1617 (2019)

    Article  CAS  Google Scholar 

  49. Z.A. Anastassi, T.E. Simos, A parametric symmetric linear four-step method for the efficient integration of the Schrödinger equation and related oscillatory problems. J. Comput. Appl. Math. 236, 3880–3889 (2012)

    Article  Google Scholar 

  50. A.D. Raptis, T.E. Simos, A four-step phase-fitted method for the numerical integration of second order initial-value problem. BIT 31, 160–168 (1991)

    Article  Google Scholar 

  51. J.M. Franco, M. Palacios, J. Comput. Appl. Math. 30, 1 (1990)

    Article  Google Scholar 

  52. J.D. Lambert, Numerical Methods for Ordinary Differential Systems, The Initial Value Problem (Wiley, London, 1991), pp. 104–107

    Google Scholar 

  53. E. Stiefel, D.G. Bettis, Stabilization of Cowell’s method. Numer. Math. 13, 154–175 (1969)

    Article  Google Scholar 

  54. G.A. Panopoulos, Z.A. Anastassi, T.E. Simos, Two new optimized eight-step symmetric methods for the efficient solution of the Schrödinger equation and related problems. MATCH Commun. Math. Comput. Chem. 60(3), 773–785 (2008)

    CAS  Google Scholar 

  55. G.A. Panopoulos, Z.A. Anastassi, T.E. Simos, Two optimized symmetric eight-step implicit methods for initial-value problems with oscillating solutions. J. Math. Chem. 46(2), 604–620 (2009)

    Article  CAS  Google Scholar 

  56. http://www.burtleburtle.net/bob/math/multistep.html

  57. T.E. Simos, P.S. Williams, Bessel and Neumann fitted methods for the numerical solution of the radial Schrödinger equation. Comput. Chem. 21, 175–179 (1977)

    Article  Google Scholar 

  58. Ch. Tsitouras, T.E. Simos, On ninth order, explicit Numerov type methods with constant coefficients. Mediterr. J. Math. 15(2), 46 (2018). https://doi.org/10.1007/s00009-018-1089-9

    Article  Google Scholar 

  59. T.E. Simos, G. Psihoyios, J. Comput. Appl. Math. 175(1), 9–9 (2005)

    Article  Google Scholar 

  60. T. Lyche, Chebyshevian multistep methods for ordinary differential equations. Num. Math. 19, 65–75 (1972)

    Article  Google Scholar 

  61. R.M. Thomas, Phase properties of high order almost P-stable formulae. BIT 24, 225–238 (1984)

    Article  Google Scholar 

  62. J.D. Lambert, I.A. Watson, Symmetric multistep methods for periodic initial values problems. J. Inst. Math. Appl. 18, 189–202 (1976)

    Article  Google Scholar 

  63. A. Konguetsof, T.E. Simos, A generator of hybrid symmetric four-step methods for the numerical solution of the Schrödinger equation. J. Comput. Appl. Math. 158(1), 93–106 (2003)

    Article  Google Scholar 

  64. Z. Kalogiratou, T. Monovasilis, T.E. Simos, Symplectic integrators for the numerical solution of the Schrödinger equation. J. Comput. Appl. Math. 158(1), 83–92 (2003)

    Article  Google Scholar 

  65. Z. Kalogiratou, T.E. Simos, Newton–Cotes formulae for long-time integration. J. Comput. Appl. Math. 158(1), 75–82 (2003)

    Article  Google Scholar 

  66. G. Psihoyios, T.E. Simos, Trigonometrically fitted predictor–corrector methods for IVPs with oscillating solutions. J. Comput. Appl. Math. 158(1), 135–144 (2003)

    Article  Google Scholar 

  67. Z. Kalogiratou, Th. Monovasilis, T.E. Simos, New Fifth Order Two-Derivative Runge–Kutta Methods with Constant and Frequency Dependent Coefficients, Mathematical Methods in the Applied Sciences, in press

  68. M.A. Medvedev, T.E. Simos, Ch. Tsitouras, Hybrid, phase-fitted, four-step methods of seventh order for solving \(\text{x}^{\prime \prime }(\text{ t }) = \text{ f } (\text{ t }, \text{ x })\), Math. Methods Appl. Sci., in press

  69. T.E. Simos, I.T. Famelis, C. Tsitouras, Zero dissipative, explicit Numerov-type methods for second order IVPs with oscillating solutions. Numer. Algorithms 34(1), 27–40 (2003)

    Article  Google Scholar 

  70. T.E. Simos, Dissipative trigonometrically-fitted methods for linear second-order IVPs with oscillating solution. Appl. Math. Lett. 17(5), 601–607 (2004)

    Article  Google Scholar 

  71. K. Tselios, T.E. Simos, Runge–Kutta methods with minimal dispersion and dissipation for problems arising from computational acoustics. J. Comput. Appl. Math. 175(1), 173–181 (2005)

    Article  Google Scholar 

  72. C. Lin, J.J. Chen, T.E. Simos, Ch. Tsitouras, Evolutionary derivation of sixth-order P-stable SDIRKN methods for the solution of PDEs with the method of lines. Mediterr. J. Math. 16(3), 69 (2019). https://doi.org/10.1007/s00009-019-1336-8

    Article  Google Scholar 

  73. G. Psihoyios, T.E. Simos, A fourth algebraic order trigonometrically fitted predictor-corrector scheme for IVPs with oscillating solutions. J. Comput. Appl. Math. 175(1), 137–147 (2005)

    Article  Google Scholar 

  74. Z.A. Anastassi, T.E. Simos, An optimized Runge–Kutta method for the solution of orbital problems. J. Comput. Appl. Math. 175(1), 1–9 (2005)

    Article  Google Scholar 

  75. T.E. Simos, Closed Newton–Cotes trigonometrically-fitted formulae of high order for long-time integration of orbital problems. Appl. Math. Lett. 22(10), 1616–1621 (2009)

    Article  Google Scholar 

  76. S. Stavroyiannis, T.E. Simos, Optimization as a function of the phase-lag order of nonlinear explicit two-step P-stable method for linear periodic IVPs. Appl. Numer. Math. 59(10), 2467–2474 (2009)

    Article  Google Scholar 

  77. T.E. Simos, Exponentially and trigonometrically fitted methods for the solution of the Schrödinger equation. Acta Appl. Math. 110(3), 1331–1352 (2010)

    Article  Google Scholar 

  78. T.E. Simos, New Stable Closed Newton–Cotes Trigonometrically Fitted Formulae for Long-Time Integration, Abstract and Applied Analysis, 2012, Article ID 182536, 15 p., (2012) https://doi.org/10.1155/2012/182536

  79. T.E. Simos, Optimizing a hybrid two-step method for the numerical solution of the Schrödinger equation and related problems with respect to phase-lag. J. Appl. Math. 2012, Article ID 420387, 17 pages, https://doi.org/10.1155/2012/420387 (2012)

  80. Ibraheem Alolyan, T.E. Simos, A high algebraic order multistage explicit four-step method with vanished phase-lag and its first, second, third, fourth and fifth derivatives for the numerical solution of the Schrödinger equation. J. Math. Chem. 53(8), 1915–1942 (2015)

    Article  CAS  Google Scholar 

  81. Ibraheem Alolyan, T.E. Simos, Efficient low computational cost hybrid explicit four-step method with vanished phase-lag and its first, second, third and fourth derivatives for the numerical integration of the Schrödinger equation. J. Math. Chem. 53(8), 1808–1834 (2015)

    Article  CAS  Google Scholar 

  82. Ibraheem Alolyan, T.E. Simos, A high algebraic order predictor-corrector explicit method with vanished phase-lag and its first, second, third and fourth derivatives for the numerical solution of the Schrödinger equation and related problems. J. Math. Chem. 53(7), 1495–1522 (2015)

    Article  CAS  Google Scholar 

  83. I. Alolyan, T.E. Simos, A family of explicit linear six-step methods with vanished phase-lag and its first derivative. J. Math. Chem. 52(8), 2087–2118 (2014)

    Article  CAS  Google Scholar 

  84. T.E. Simos, An explicit four-step method with vanished phase-lag and its first and second derivatives. J. Math. Chem. 52(3), 833–855 (2014)

    Article  CAS  Google Scholar 

  85. Ibraheem Alolyan, T.E. Simos, A Runge–Kutta type four-step method with vanished phase-lag and its first and second derivatives for each level for the numerical integration of the Schrödinger equation. J. Math. Chem. 52(3), 917–947 (2014)

    Article  CAS  Google Scholar 

  86. I. Alolyan, T.E. Simos, A predictor–corrector explicit four-step method with vanished phase-lag and its first, second and third derivatives for the numerical integration of the Schrödinger equation. J. Math. Chem. 53(2), 685–717 (2015)

    Article  CAS  Google Scholar 

  87. I. Alolyan, T.E. Simos, A hybrid type four-step method with vanished phase-lag and its first, second and third derivatives for each level for the numerical integration of the Schrödinger equation. J. Math. Chem. 52(9), 2334–2379 (2014)

    Article  CAS  Google Scholar 

  88. G.A. Panopoulos, T.E. Simos, A new optimized symmetric 8-step semi-embedded predictor–corrector method for the numerical solution of the radial Schrödinger equation and related orbital problems. J. Math. Chem. 51(7), 1914–1937 (2013)

    Article  CAS  Google Scholar 

  89. T.E. Simos, New high order multiderivative explicit four-step methods with vanished phase-lag and its derivatives for the approximate solution of the Schrödinger equation. Part I: construction and theoretical analysis. J. Math. Chem. 51(1), 194–226 (2013)

    Article  CAS  Google Scholar 

  90. T.E. Simos, High order closed Newton–Cotes exponentially and trigonometrically fitted formulae as multilayer symplectic integrators and their application to the radial Schrödinger equation. J. Math. Chem. 50(5), 1224–1261 (2012)

    Article  CAS  Google Scholar 

  91. D.F. Papadopoulos, T.E. Simos, A modified Runge–Kutta–Nyström method by using phase lag properties for the numerical solution of orbital problems. Appl. Math. Inf. Sci. 7(2), 433–437 (2013)

    Article  Google Scholar 

  92. Th Monovasilis, Z. Kalogiratou, T.E. Simos, Exponentially fitted symplectic Runge–Kutta–Nyström methods. Appl. Math. Inf. Sci. 7(1), 81–85 (2013)

    Article  Google Scholar 

  93. G.A. Panopoulos, T.E. Simos, An optimized symmetric 8-step semi-embedded predictor–corrector method for IVPs with oscillating solutions. Appl. Math. Inf. Sci. 7(1), 73–80 (2013)

    Article  Google Scholar 

  94. D.F. Papadopoulos, T.E Simos, The Use of Phase Lag and Amplification Error Derivatives for the Construction of a Modified Runge–Kutta–Nyström Method, Abstract and Applied Analysis Article Number: 910624 Published (2013)

  95. I. Alolyan, Z.A. Anastassi, T.E. Simos, A new family of symmetric linear four-step methods for the efficient integration of the Schrödinger equation and related oscillatory problems. Appl. Math. Comput. 218(9), 5370–5382 (2012)

    Google Scholar 

  96. Ibraheem Alolyan, T.E. Simos, A family of high-order multistep methods with vanished phase-lag and its derivatives for the numerical solution of the Schrödinger equation. Comput. Math. Appl. 62(10), 3756–3774 (2011)

    Article  Google Scholar 

  97. Ch. Tsitouras, ITh Famelis, T.E. Simos, On modified Runge-*Kutta trees and methods. Comput. Math. Appl. 62(4), 2101–2111 (2011)

    Article  Google Scholar 

  98. Ch. Tsitouras, ITh Famelis, T.E. Simos, Phase-fitted Runge–Kutta pairs of orders 8(7). J. Comput. Appl. Math. 321, 226–231 (2017)

    Article  Google Scholar 

  99. M.A. Medvedev, T.E. Simos, Ch. Tsitouras, Trigonometric-fitted hybrid four-step methods of sixth order for solving \(y^{\prime \prime }(x)=f(x, y)\). Math. Methods Appl. Sci. 42(2), 710–716 (2019)

    Article  Google Scholar 

  100. M.A. Medvedev, T.E. Simos, Ch. Tsitouras, Hybrid, phase-fitted, four-step methods of seventh order for solving \(\text{ x }^{\prime \prime }(\text{ t }) = \text{ f } (\text{ t }, \text{ x })\). Math. Methods Appl. Sci. 42(6), 2025–2032 (2019). appear

    Article  Google Scholar 

  101. J. Fang, C. Liu, C.-W. Hsu, T.E. Simos, Ch. Tsitouras, Explicit hybrid six–step, sixth order, fully symmetric methods for solving \(y^{\prime \prime } =f (x, y)\). Math. Methods Appl. Sci. 42(9), 3305–3314 (2019)

    Article  Google Scholar 

  102. T.E. Simos, C.H. Tsitouras, High phase-lag order, four-step methods for solving \(\text{ y }^{\prime \prime } = \text{ f }(\text{ x }, \text{ y })\). Appl. Comput. Math 17(3), 307–316 (2018)

    Google Scholar 

  103. T.E. Simos, Ch. Tsitouras, Evolutionary generation of high order, explicit two step methods for second order linear IVPs. Math. Methods Appl. Sci. 40, 6276–6284 (2017)

    Article  Google Scholar 

  104. T.E. Simos, Ch. Tsitouras, A new family of 7 stages, eighth-order explicit Numerov-type methods. Math. Methods Appl. Sci. 40, 7867–7878 (2017)

    Article  Google Scholar 

  105. D.B. Berg, T.E. Simos, Ch. Tsitouras, Trigonometric fitted, eighth-order explicit Numerov-type methods. Math. Methods Appl. Sci. 41, 1845–1854 (2018)

    Article  Google Scholar 

  106. T.E. Simos, Ch. Tsitouras, Fitted modifications of classical Runge–Kutta pairs of orders 5(4). Math. Methods Appl. Sci. 41(12), 4549–4559 (2018)

    Article  Google Scholar 

  107. Ch. Tsitouras, T.E. Simos, Trigonometric fitted explicit Numerov type method with vanishing phase-lag and its first and second derivatives, Mediterranean Journal of Mathematics 15(4) Article Number: 168, https://doi.org/10.1007/s00009-018-1216-7 (2018)

  108. M.A. Medvedev, T.E. Simos, Ch. Tsitouras, Fitted modifications of Runge–Kutta pairs of orders 6(5). Math. Methods Appl. Sci. 41(16), 6184–6194 (2018)

    Article  Google Scholar 

  109. M.A. Medvedev, T.E. Simos, Ch. Tsitouras, Explicit, two stage, sixth order, hybrid four-step methods for solving \(y^{\prime \prime }(x)=f(x, y)\). Math. Methods Appl. Sci. 41(16), 6997–7006 (2018)

    Article  Google Scholar 

  110. T.E. Simos, Ch. Tsitouras, ITh Famelis, Explicit numerov type methods with constant coefficients: a review. Appl. Comput. Math. 16(2), 89–113 (2017)

    Google Scholar 

  111. T.E. Simos, Ch. Tsitouras, High phase-lag order, four-step methods for solving \(y^{\prime \prime }=f(x, y)\). Appl. Comput. Math. 17(3), 307–316 (2018)

    Google Scholar 

  112. A.A. Kosti, Z.A. Anastassi, T.E. Simos, Construction of an optimized explicit Runge–Kutta–Nyström method for the numerical solution of oscillatory initial value problems. Comput. Math. Appl. 61(11), 3381–3390 (2011)

    Article  Google Scholar 

  113. Z. Kalogiratou, Th Monovasilis, T.E. Simos, New modified Runge–Kutta–Nystrom methods for the numerical integration of the Schrödinger equation. Comput. Math. Appl. 60(6), 1639–1647 (2010)

    Article  Google Scholar 

  114. Th Monovasilis, Z. Kalogiratou, T.E. Simos, A family of trigonometrically fitted partitioned Runge–Kutta symplectic methods. Appl. Math. Comput. 209(1), 91–96 (2009)

    Google Scholar 

  115. T. Monovasilis, Z. Kalogiratou, T.E. Simos, Construction of exponentially fitted symplectic Runge–Kutta–Nyström methods from partitioned Runge–Kutta methods. Mediterr. J. Math. 13(4), 2271–2285 (2016)

    Article  Google Scholar 

  116. T. Monovasilis, Z. Kalogiratou, H. Ramos, T.E. Simos, Modified two-step hybrid methods for the numerical integration of oscillatory problems. Math. Methods Appl. Sci. 40(4), 5286–5294 (2017)

    Article  Google Scholar 

  117. T.E. Simos, Multistage symmetric two-step P-stable method with vanished phase-lag and its first, second and third derivatives. Appl. Comput. Math. 14(3), 296–315 (2015)

    Google Scholar 

  118. Z. Kalogiratou, Th Monovasilis, H. Ramos, T.E. Simos, A new approach on the construction of trigonometrically fitted two step hybrid methods. J. Comput. Appl. Math. 303, 146–155 (2016)

    Article  Google Scholar 

  119. H. Ramos, Z. Kalogiratou, Th Monovasilis, T.E. Simos, An optimized two-step hybrid block method for solving general second order initial-value problems. Numer. Algorithms 72, 1089–1102 (2016)

    Article  Google Scholar 

  120. T.E. Simos, High order closed Newton–Cotes trigonometrically-fitted formulae for the numerical solution of the Schrödinger equation. Appl. Math. Comput. 209(1), 137–151 (2009)

    Google Scholar 

  121. A. Konguetsof, T.E. Simos, An exponentially-fitted and trigonometrically-fitted method for the numerical solution of periodic initial-value problems, Comput. Math. Appl., 45(1–3), 547–554 Article Number: PII S0898-1221(02)00354-1 (2003)

  122. T.E. Simos, A new explicit hybrid four-step method with vanished phase-lag and its derivatives. J. Math. Chem. 52(7), 1690–1716 (2014)

    Article  CAS  Google Scholar 

  123. T.E. Simos, On the explicit four-step methods with vanished phase-lag and its first derivative. Appl. Math. Inf. Sci. 8(2), 447–458 (2014)

    Article  Google Scholar 

  124. G.A. Panopoulos, T.E. Simos, A new optimized symmetric embedded predictor–corrector method (EPCM) for initial-value problems with oscillatory solutions. Appl. Math. Inf. Sci. 8(2), 703–713 (2014)

    Article  Google Scholar 

  125. G.A. Panopoulos, T.E. Simos, An eight-step semi-embedded predictor-corrector method for orbital problems and related IVPs with oscillatory solutions for which the frequency is unknown. Jo. Comput. Appl. Math. 290, 1–15 (2015)

    Article  Google Scholar 

  126. F. Hui, T.E. Simos, A new family of two stage symmetric two-step methods with vanished phase-lag and its derivatives for the numerical integration of the Schrödinger equation. J. Math. Chem. 53(10), 2191–2213 (2015)

    Article  CAS  Google Scholar 

  127. L.G. Ixaru, M. Rizea, Comparison of some four-step methods for the numerical solution of the Schrödinger equation. Comput. Phys. Commun. 38(3), 329–337 (1985)

    Article  CAS  Google Scholar 

  128. L. Ixaru, M. Micu, Topics in Theoretical Physics (Central Institute of Physics, Bucharest, 1978)

    Google Scholar 

  129. L.G. Ixaru, M. Rizea, A Numerov-like scheme for the numerical solution of the Schrödinger equation in the deep continuum spectrum of energies. Comput. Phys. Commun. 19, 23–27 (1980)

    Article  Google Scholar 

  130. J.R. Dormand, M.E.A. El-Mikkawy, P.J. Prince, Families of Runge–Kutta–Nyström formulae. IMA J. Numer. Anal. 7, 235–250 (1987)

    Article  Google Scholar 

  131. J.R. Dormand, P.J. Prince, A family of embedded Runge–Kutta formulae. J. Comput. Appl. Math. 6, 19–26 (1980)

    Article  Google Scholar 

  132. G.D. Quinlan, S. Tremaine, Symmetric multistep methods for the numerical integration of planetary orbits. Astron. J. 100, 1694–1700 (1990)

    Article  Google Scholar 

  133. A.D. Raptis, A.C. Allison, Exponential-fitting methods for the numerical solution of the Schrödinger equation. Comput. Phys. Commun. 14, 1–5 (1978)

    Article  Google Scholar 

  134. M.M. Chawla, P.S. Rao, An Noumerov-typ method with minimal phase-lag for the integration of second order periodic initial-value problems II: explicit method. J. Comput. Appl. Math. 15, 329–337 (1986)

    Article  Google Scholar 

  135. M.M. Chawla, P.S. Rao, An explicit sixth-order method with phase-lag of order eight for \(y^{\prime \prime }=f(t, y)\). J. Comput. Appl. Math. 17, 363–368 (1987)

    Google Scholar 

  136. T.E. Simos, A new Numerov-type method for the numerical solution of the Schrödinger equation. J. Math. Chem. 46, 981–1007 (2009)

    Article  CAS  Google Scholar 

  137. A. Konguetsof, Two-step high order hybrid explicit method for the numerical solution of the Schrödinger equation. J. Math. Chem. 48, 224–252 (2010)

    Article  CAS  Google Scholar 

  138. A.D. Raptis, J.R. Cash, A variable step method for the numerical integration of the one-dimensional Schrödinger equation. Comput. Phys. Commun. 36, 113–119 (1985)

    Article  CAS  Google Scholar 

  139. R.B. Bernstein, A. Dalgarno, H. Massey, I.C. Percival, Thermal scattering of atoms by homonuclear diatomic molecules. Proc. R. Soc. Ser. A 274, 427–442 (1963)

    Article  CAS  Google Scholar 

  140. R.B. Bernstein, Quantum mechanical (phase shift) analysis of differential elastic scattering of molecular beams. J. Chem. Phys. 33, 795–804 (1960)

    Article  CAS  Google Scholar 

  141. T.E. Simos, Exponentially fitted Runge–Kutta methods for the numerical solution of the Schrödinger equation and related problems. Comput. Mater. Sci. 18, 315–332 (2000)

    Article  Google Scholar 

  142. J.R. Dormand, P.J. Prince, A family of embedded Runge–Kutta formula. J. Comput. Appl. Math. 6, 19–26 (1980)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. E. Simos.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest or other ethical conflicts concerning this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highly Cited Researcher (https://clarivate.com/hcr/), Active Member of the European Academy of Sciences and Arts. Active Member of the European Academy of Sciences. Corresponding Member of European Academy of Arts, Sciences and Humanities.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 34 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lv, J., Simos, T.E. A Runge–Kutta type crowded in phase algorithm for quantum chemistry problems. J Math Chem 57, 1983–2006 (2019). https://doi.org/10.1007/s10910-019-01051-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10910-019-01051-y

Keywords

Mathematics Subject Classification

Navigation