Skip to main content
Log in

A multistage two-step fraught in phase scheme for problems in mathematical chemistry

  • Original Paper
  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

The computational solution of systems of differential equations with great interest in Chemistry is the subject of this research. The analysis of the finite difference method of the present research shows the effectiveness of the approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Z.A. Anastassi, T.E. Simos, A parametric symmetric linear four-step method for the efficient integration of the Schrödinger equation and related oscillatory problems. J. Comput. Appl. Math. 236, 3880–3889 (2012)

    Article  Google Scholar 

  2. A.D. Raptis, T.E. Simos, A four-step phase-fitted method for the numerical integration of second order initial-value problem. BIT 31, 160–168 (1991)

    Article  Google Scholar 

  3. J.M. Franco, M. Palacios, J. Comput. Appl. Math. 30, 1 (1990)

    Article  Google Scholar 

  4. J.D. Lambert, Numerical Methods for Ordinary Differential Systems, The Initial Value Problem (Wiley, Hoboken, 1991), pp. 104–107

    Google Scholar 

  5. E. Stiefel, D.G. Bettis, Stabilization of Cowell’s method. Numer. Math. 13, 154–175 (1969)

    Article  Google Scholar 

  6. G.A. Panopoulos, Z.A. Anastassi, T.E. Simos, Two new optimized eight-step symmetric methods for the efficient solution of the Schrödinger equation and related problems. MATCH Commun. Math. Comput. Chem. 60(3), 773–785 (2008)

    CAS  Google Scholar 

  7. G.A. Panopoulos, Z.A. Anastassi, T.E. Simos, Two optimized symmetric eight-step implicit methods for initial-value problems with oscillating solutions. J. Math. Chem. 46(2), 604–620 (2009)

    Article  CAS  Google Scholar 

  8. http://www.burtleburtle.net/bob/math/multistep.html

  9. T.E. Simos, P.S. Williams, Bessel and Neumann fitted methods for the numerical solution of the radial Schrödinger equation. Comput. Chem. 21, 175–179 (1977)

    Article  Google Scholar 

  10. T.E. Simos, J. Vigo-Aguiar, A dissipative exponentially-fitted method for the numerical solution of the Schrödinger equation and related problems. Comput. Phys. Commun. 152, 274–294 (2003)

    Article  CAS  Google Scholar 

  11. J. Fang, C. Liu, C.-W. Hsu, T.E. Simos, Ch. Tsitouras, Explicit hybrid six-step, sixth order, fully symmetric methods for solving \(y^{\prime \prime } =f (x, y)\). Math. Methods Appl. Sci. 42(9), 3305–3314 (2019)

    Article  Google Scholar 

  12. T. Lyche, Chebyshevian multistep methods for ordinary differential eqations. Num. Math. 19, 65–75 (1972)

    Article  Google Scholar 

  13. T.E. Simos, P.S. Williams, A finite difference method for the numerical solution of the Schrödinger equation. J. Comput. Appl. Math. 79, 189–205 (1997)

    Article  Google Scholar 

  14. R.M. Thomas, Phase properties of high order almost P-stable formulae. BIT 24, 225–238 (1984)

    Article  Google Scholar 

  15. J.D. Lambert, I.A. Watson, Symmetric multistep methods for periodic initial values problems. J. Inst. Math. Appl. 18, 189–202 (1976)

    Article  Google Scholar 

  16. A. Konguetsof, T.E. Simos, A generator of hybrid symmetric four-step methods for the numerical solution of the Schrödinger equation. J. Comput. Appl. Math. 158(1), 93–106 (2003)

    Article  Google Scholar 

  17. Z. Kalogiratou, T. Monovasilis, T.E. Simos, Symplectic integrators for the numerical solution of the Schrödinger equation. J. Comput. Appl. Math. 158(1), 83–92 (2003)

    Article  Google Scholar 

  18. Z. Kalogiratou, T.E. Simos, Newton-Cotes formulae for long-time integration. J. Comput. Appl. Math. 158(1), 75–82 (2003)

    Article  Google Scholar 

  19. C. Lin, J.J. Chen, T.E. Simos, Ch. Tsitouras, Evolutionary derivation of sixth-order P-stable SDIRKN methods for the solution of PDEs with the method of lines. Mediterr. J. Math. 16(3), 69 (2019). https://doi.org/10.1007/s00009-019-1336-8

    Article  Google Scholar 

  20. Z. Kalogiratou, T. Monovasilis, T.E. Simos, New fifth order two-derivative Runge–Kutta methods with constant and frequency dependent coefficients. Math. Methods Appl. Sci. 42(6), 1955–1966 (2019)

    Article  Google Scholar 

  21. T.E. Simos, I.T. Famelis, C. Tsitouras, Zero dissipative, explicit Numerov-type methods for second order IVPs with oscillating solutions. Numer. Algorithms 34(1), 27–40 (2003)

    Article  Google Scholar 

  22. T.E. Simos, Dissipative trigonometrically-fitted methods for linear second-order IVPs with oscillating solution. Appl. Math. Lett. 17(5), 601–607 (2004)

    Article  Google Scholar 

  23. K. Tselios, T.E. Simos, Runge–Kutta methods with minimal dispersion and dissipation for problems arising from computational acoustics. J. Comput. Appl. Math. 175(1), 173–181 (2005)

    Article  Google Scholar 

  24. D.P. Sakas, T.E. Simos, Multiderivative methods of eighth algrebraic order with minimal phase-lag for the numerical solution of the radial Schrödinger equation. J. Comput. Appl. Math. 175(1), 161–172 (2005)

    Article  Google Scholar 

  25. G. Psihoyios, T.E. Simos, A fourth algebraic order trigonometrically fitted predictor-corrector scheme for IVPs with oscillating solutions. J. Comput. Appl. Math. 175(1), 137–147 (2005)

    Article  Google Scholar 

  26. Z.A. Anastassi, T.E. Simos, An optimized Runge–Kutta method for the solution of orbital problems. J. Comput. Appl. Math. 175(1), 1–9 (2005)

    Article  Google Scholar 

  27. T.E. Simos, Closed Newton–Cotes trigonometrically-fitted formulae of high order for long-time integration of orbital problems. Appl. Math. Lett. 22(10), 1616–1621 (2009)

    Article  Google Scholar 

  28. S. Stavroyiannis, T.E. Simos, Optimization as a function of the phase-lag order of nonlinear explicit two-step P-stable method for linear periodic IVPs. Appl. Numer. Math. 59(10), 2467–2474 (2009)

    Article  Google Scholar 

  29. T.E. Simos, Exponentially and trigonometrically fitted methods for the solution of the Schrödinger equation. Acta Applicandae Mathematicae 110(3), 1331–1352 (2010)

    Article  Google Scholar 

  30. T.E. Simos, New stable closed newton-cotes trigonometrically fitted formulae for long-time integration. Abstr. Appl. Anal. 2012, Article ID 182536, 15 (2012) https://doi.org/10.1155/2012/182536

  31. T.E. Simos, Optimizing a hybrid two-step method for the numerical solution of the Schrödinger equation and related problems with respect to phase-lag. J. Appl. Math. 2012, Article ID 420387, 17 (2012) https://doi.org/10.1155/2012/420387

  32. I. Alolyan, T.E. Simos, A high algebraic order multistage explicit four-step method with vanished phase-lag and its first, second, third, fourth and fifth derivatives for the numerical solution of the Schrödinger equation. J. Math. Chem. 53(8), 1915–1942 (2015)

    Article  CAS  Google Scholar 

  33. I. Alolyan, T.E. Simos, Efficient low computational cost hybrid explicit four-step method with vanished phase-lag and its first, second, third and fourth derivatives for the numerical integration of the Schrödinger equation. J. Math. Chem. 53(8), 1808–1834 (2015)

    Article  CAS  Google Scholar 

  34. I. Alolyan, T.E. Simos, A high algebraic order predictor-corrector explicit method with vanished phase-lag and its first, second, third and fourth derivatives for the numerical solution of the Schrödinger equation and related problems. J. Math. Chem. 53(7), 1495–1522 (2015)

    Article  CAS  Google Scholar 

  35. I. Alolyan, T.E. Simos, A family of explicit linear six-step methods with vanished phase-lag and its first derivative. J. Math. Chem. 52(8), 2087–2118 (2014)

    Article  CAS  Google Scholar 

  36. T.E. Simos, An explicit four-step method with vanished phase-lag and its first and second derivatives. J. Math. Chem. 52(3), 833–855 (2014)

    Article  CAS  Google Scholar 

  37. I. Alolyan, T.E. Simos, A Runge-Kutta type four-step method with vanished phase-lag and its first and second derivatives for each level for the numerical integration of the Schrödinger equation. J. Math. Chem. 52(3), 917–947 (2014)

    Article  CAS  Google Scholar 

  38. I. Alolyan, T.E. Simos, A predictor-corrector explicit four-step method with vanished phase-lag and its first, second and third derivatives for the numerical integration of the Schrödinger equation. J. Math. Chem. 53(2), 685–717 (2015)

    Article  CAS  Google Scholar 

  39. I. Alolyan, T.E. Simos, A hybrid type four-step method with vanished phase-lag and its first, second and third derivatives for each level for the numerical integration of the Schrödinger equation. J. Math. Chem. 52(9), 2334–2379 (2014)

    Article  CAS  Google Scholar 

  40. G.A. Panopoulos, T.E. Simos, A new optimized symmetric 8-step semi-embedded predictor-corrector method for the numerical solution of the radial Schrödinger equation and related orbital problems. J. Math. Chem. 51(7), 1914–1937 (2013)

    Article  CAS  Google Scholar 

  41. T.E. Simos, New high order multiderivative explicit four-step methods with vanished phase-lag and its derivatives for the approximate solution of the Schrödinger equation. Part I: construction and theoretical analysis. J. Math. Chem. 51(1), 194–226 (2013)

    Article  CAS  Google Scholar 

  42. T.E. Simos, High order closed Newton–Cotes exponentially and trigonometrically fitted formulae as multilayer symplectic integrators and their application to the radial Schrödinger equation. J. Math. Chem. 50(5), 1224–1261 (2012)

    Article  CAS  Google Scholar 

  43. D.F. Papadopoulos, T.E. Simos, A modified Runge–Kutta–Nyström method by using phase lag properties for the numerical solution of orbital problems. Appl. Math. Inf. Sci. 7(2), 433–437 (2013)

    Article  Google Scholar 

  44. Z. Th Monovasilis, T.E.Simos Kalogiratou, Exponentially fitted symplectic Runge–Kutta–Nyström methods. Appl. Math. Inf. Sci. 7(1), 81–85 (2013)

    Article  Google Scholar 

  45. G.A. Panopoulos, T.E. Simos, An optimized symmetric 8-step semi-embedded predictor–corrector method for IVPs with oscillating solutions. Appl. Math. Inf. Sci. 7(1), 73–80 (2013)

    Article  Google Scholar 

  46. D.F. Papadopoulos, T.E. Simos, The use of phase lag and amplification error derivatives for the construction of a modified Runge–Kutta–Nyström method. Abstr. Appl. Anal. 2013, 910624 (2013). https://doi.org/10.1155/2013/910624

    Article  Google Scholar 

  47. I. Alolyan, Z.A. Anastassi, T.E. Simos, A new family of symmetric linear four-step methods for the efficient integration of the Schrödinger equation and related oscillatory problems. Appl. Math. Comput. 218(9), 5370–5382 (2012)

    Google Scholar 

  48. I. Alolyan, T.E. Simos, A family of high-order multistep methods with vanished phase-lag and its derivatives for the numerical solution of the Schrödinger equation. Comput. Math. Appl. 62(10), 3756–3774 (2011)

    Article  Google Scholar 

  49. Ch. Tsitouras, ITh Famelis, T.E. Simos, On modified Runge–Kutta trees and methods. Comput. Math. Appl. 62(4), 2101–2111 (2011)

    Article  Google Scholar 

  50. Ch. Tsitouras, ITh Famelis, T.E. Simos, Phase-fitted Runge–Kutta pairs of orders 8(7). J. Comput. Appl. Math. 321, 226–231 (2017)

    Article  Google Scholar 

  51. Maxim A. Medvedev, T.E. Simos, Ch. Tsitouras, Trigonometric-fitted hybrid four-step methods of sixth order for solving \(y^{\prime \prime }(x)=f(x, y)\). Math. Methods Appl. Sci. 42(2), 710–716 (2019)

    Article  Google Scholar 

  52. Maxim A. Medvedev, T.E. Simos, Ch. Tsitouras, Hybrid, phase-fitted, four-step methods of seventh order for solving x”(t) = f (t, x). Math. Methods Appl. Sci. 42(6), 2025–2032 (2019)

    Article  Google Scholar 

  53. T.E. Simos, Ch. Tsitouras, High phase-lag order, four-step methods for solving y” = f(x, y). Appl. Comput. Math. 17(3), 307–316 (2018)

    Google Scholar 

  54. T.E. Simos, Ch. Tsitouras, Evolutionary generation of high order, explicit two step methods for second order linear IVPs. Math. Methods Appl. Sci. 40, 6276–6284 (2017)

    Article  Google Scholar 

  55. T.E. Simos, Ch. Tsitouras, A new family of 7 stages, eighth-order explicit Numerov-type methods. Math. Methods Appl. Sci. 40, 7867–7878 (2017)

    Article  Google Scholar 

  56. D.B. Berg, T.E. Simos, Ch. Tsitouras, Trigonometric fitted, eighth-order explicit Numerov-type methods. Math. Methods Appl. Sci. 41, 1845–1854 (2018)

    Article  Google Scholar 

  57. T.E. Simos, Ch. Tsitouras, Fitted modifications of classical Runge–Kutta pairs of orders 5(4). Math. Methods Appl. Sci. 41(12), 4549–4559 (2018)

    Article  Google Scholar 

  58. Ch. Tsitouras, T.E. Simos, Trigonometric fitted explicit Numerov type method with vanishing phase-lag and its first and second derivatives. Mediterr. J. Math. 15(4), Article Number: 168 (2018). https://doi.org/10.1007/s00009-018-1216-7

  59. M.A. Medvedev, T.E. Simos, Ch. Tsitouras, Fitted modifications of Runge–Kutta pairs of orders 6(5). Math. Methods Appl. Sci. 41(16), 6184–6194 (2018)

    Article  Google Scholar 

  60. M.A. Medvedev, T.E. Simos, Ch. Tsitouras, Explicit, two stage, sixth order, hybrid four-step methods for solving \(y^{\prime \prime }(x)=f(x, y)\). Math. Methods Appl. Sci. 41(16), 6997–7006 (2018)

    Article  Google Scholar 

  61. T.E. Simos, Ch. Tsitouras, ITh Famelis, Explicit numerov type methods with constant coefficients: a review. Appl. Comput. Math. 16(2), 89–113 (2017)

    Google Scholar 

  62. T.E. Simos, Ch. Tsitouras, High phase-lag order, four-step methods for solving \(y^{\prime \prime }=f(x, y)\). Appl. Comput. Math. 17(3), 307–316 (2018)

    Google Scholar 

  63. A.A. Kosti, Z.A. Anastassi, T.E. Simos, Construction of an optimized explicit Runge–Kutta–Nyström method for the numerical solution of oscillatory initial value problems. Comput. Math. Appl. 61(11), 3381–3390 (2011)

    Article  Google Scholar 

  64. Z. Kalogiratou, Th Monovasilis, T.E. Simos, New modified Runge–Kutta–Nystrom methods for the numerical integration of the Schrödinger equation. Comput. Math. Appl. 60(6), 1639–1647 (2010)

    Article  Google Scholar 

  65. Z. Th Monovasilis, T.E.Simos Kalogiratou, A family of trigonometrically fitted partitioned Runge–Kutta symplectic methods. Appl. Math. Comput. 209(1), 91–96 (2009)

    Google Scholar 

  66. T. Monovasilis, Z. Kalogiratou, T.E. Simos, Construction of exponentially fitted symplectic Runge–Kutta–Nyström methods from partitioned Runge–Kutta methods. Mediterr. J. Math. 13(4), 2271–2285 (2016)

    Article  Google Scholar 

  67. T. Monovasilis, Z. Kalogiratou, H. Ramos, T.E. Simos, Modified two-step hybrid methods for the numerical integration of oscillatory problems. Math. Methods Appl. Sci. 40(4), 5286–5294 (2017)

    Article  Google Scholar 

  68. T.E. Simos, Multistage symmetric two-step P-stable method with vanished phase-lag and its first, second and third derivatives. Appl. Comput. Math. 14(3), 296–315 (2015)

    Google Scholar 

  69. Z. Kalogiratou, Th Monovasilis, H. Ramos, T.E. Simos, A new approach on the construction of trigonometrically fitted two step hybrid methods. J. Comput. Appl. Math. 303, 146–155 (2016)

    Article  Google Scholar 

  70. H. Ramos, Z. Kalogiratou, Th Monovasilis, T.E. Simos, An optimized two-step hybrid block method for solving general second order initial-value problems. Numer. Algorithms 72, 1089–1102 (2016)

    Article  Google Scholar 

  71. T.E. Simos, High order closed Newton–Cotes trigonometrically-fitted formulae for the numerical solution of the Schrödinger equation. Appl. Math. Comput. 209(1), 137–151 (2009)

    Google Scholar 

  72. A. Konguetsof, T.E. Simos, An exponentially-fitted and trigonometrically-fitted method for the numerical solution of periodic initial-value problems. Comput. Math. Appl. 45(1–3), 547–554 (2003). (Article Number: PII S0898-1221(02)00354-1)

    Article  Google Scholar 

  73. T.E. Simos, A new explicit hybrid four-step method with vanished phase-lag and its derivatives. J. Math. Chem. 52(7), 1690–1716 (2014)

    Article  CAS  Google Scholar 

  74. M.A. Medvedev, T.E. Simos, A three-stages multistep teeming in phase algorithm for computational problems in chemistry. J. Math. Chem. 57(6), 1598–1617 (2019)

    Article  CAS  Google Scholar 

  75. T.E. Simos, On the explicit four-step methods with vanished phase-lag and its first derivative. Appl. Math. Inf. Sci. 8(2), 447–458 (2014)

    Article  Google Scholar 

  76. G.A. Panopoulos, T.E. Simos, A new optimized symmetric embedded predictor–corrector method (EPCM) for initial-value problems with oscillatory solutions. Appl. Math. Inf. Sci. 8(2), 703–713 (2014)

    Article  Google Scholar 

  77. G.A. Panopoulos, T.E. Simos, An eight-step semi-embedded predictor-corrector method for orbital problems and related IVPs with oscillatory solutions for which the frequency is unknown. J. Comput. Appl. Math. 290, 1–15 (2015)

    Article  Google Scholar 

  78. F. Hui, T.E. Simos, A new family of two stage symmetric two-step methods with vanished phase-lag and its derivatives for the numerical integration of the Schrödinger equation. J. Math. Chem. 53(10), 2191–2213 (2015)

    Article  CAS  Google Scholar 

  79. LGr Ixaru, M. Rizea, Comparison of some four-step methods for the numerical solution of the Schrödinger equation. Comput. Phys. Commun. 38(3), 329–337 (1985)

    Article  CAS  Google Scholar 

  80. LGr Ixaru, M. Micu, Topics in Theoretical Physics (Central Institute of Physics, Bucharest, 1978)

    Google Scholar 

  81. LGr Ixaru, M. Rizea, A Numerov-like scheme for the numerical solution of the Schrödinger equation in the deep continuum spectrum of energies. Comput. Phys. Commun. 19, 23–27 (1980)

    Article  Google Scholar 

  82. J.R. Dormand, M.E.A. El-Mikkawy, P.J. Prince, Families of Runge–Kutta–Nyström formulae. IMA J. Numer. Anal. 7, 235–250 (1987)

    Article  Google Scholar 

  83. J.R. Dormand, P.J. Prince, A family of embedded Runge–Kutta formulae. J. Comput. Appl. Math. 6, 19–26 (1980)

    Article  Google Scholar 

  84. G.D. Quinlan, S. Tremaine, Symmetric multistep methods for the numerical integration of planetary orbits. Astron. J. 100, 1694–1700 (1990)

    Article  Google Scholar 

  85. A.D. Raptis, A.C. Allison, Exponential-fitting methods for the numerical solution of the Schrödinger equation. Comput. Phys. Commun. 14, 1–5 (1978)

    Article  Google Scholar 

  86. M.M. Chawla, P.S. Rao, An Noumerov-typ method with minimal phase-lag for the integration of second order periodic initial-value problems II explicit method. J. Comput. Appl. Math. 15, 329–337 (1986)

    Article  Google Scholar 

  87. M.M. Chawla, P.S. Rao, An explicit sixth—order method with phase-lag of order eight for \(y^{\prime \prime }=f(t, y)\). J. Comput. Appl. Math. 17, 363–368 (1987)

    Google Scholar 

  88. T.E. Simos, A new Numerov-type method for the numerical solution of the Schrödinger equation. J. Math. Chem. 46, 981–1007 (2009)

    Article  CAS  Google Scholar 

  89. A. Konguetsof, Two-step high order hybrid explicit method for the numerical solution of the Schrödinger equation. J. Math. Chem. 48, 224–252 (2010)

    Article  CAS  Google Scholar 

  90. A.D. Raptis, J.R. Cash, A variable step method for the numerical integration of the one-dimensional Schrödinger equation. Comput. Phys. Commun. 36, 113–119 (1985)

    Article  CAS  Google Scholar 

  91. A.C. Allison, The numerical solution of coupled differential equations arising from the Schrödinger equation. J. Comput. Phys. 6, 378–391 (1970)

    Article  Google Scholar 

  92. R.B. Bernstein, A. Dalgarno, H. Massey, I.C. Percival, Thermal scattering of atoms by homonuclear diatomic molecules. Proc. R. Soc. Ser. A 274, 427–442 (1963)

    Article  CAS  Google Scholar 

  93. R.B. Bernstein, Quantum mechanical (phase shift) analysis of differential elastic scattering of molecular beams. J. Chem. Phys. 33, 795–804 (1960)

    Article  CAS  Google Scholar 

  94. T.E. Simos, Exponentially fitted Runge–Kutta methods for the numerical solution of the Schrödinger equation and related problems. Comput. Mater. Sci. 18, 315–332 (2000)

    Article  Google Scholar 

  95. J.R. Dormand, P.J. Prince, A family of embedded Runge–Kutta formula. J. Comput. Appl. Math. 6, 19–26 (1980)

    Article  Google Scholar 

  96. K. Mu, T.E. Simos, A Runge–Kutta type implicit high algebraic order two-step method with vanished phase-lag and its first, second, third and fourth derivatives for the numerical solution of coupled differential equations arising from the Schrödinger equation. J. Math. Chem. 53, 1239–1256 (2015)

    Article  CAS  Google Scholar 

  97. M. Liang, T.E. Simos, A new four stages symmetric two-step method with vanished phase-lag and its first derivative for the numerical integration of the Schrödinger equation. J. Math. Chem. 54(5), 1187–1211 (2016)

    Article  CAS  Google Scholar 

  98. X. Xi, T.E. Simos, A new high algebraic order four stages symmetric two-step method with vanished phase-lag and its first and second derivatives for the numerical solution of the Schrödinger equation and related problems. J. Math. Chem. 54(7), 1417–1439 (2016)

    Article  CAS  Google Scholar 

  99. F. Hui, T.E. Simos, Hybrid high algebraic order two-step method with vanished phase-lag and its first and second derivatives. MATCH Commun. Math. Comput. Chem. 73, 619–648 (2015)

    Google Scholar 

  100. Z. Zhou, T.E. Simos, A new two stage symmetric two-step method with vanished phase-lag and its first, second, third and fourth derivatives for the numerical solution of the radial Schrödinger equation. J. Math. Chem. 54, 442–465 (2016)

    Article  CAS  Google Scholar 

  101. Fei Hui, T.E. Simos, Four stages symmetric two-step P-stable method with vanished phase-lag and its first, second, third and fourth derivatives. Appl. Comput. Math. 15(2), 220–238 (2016)

    Google Scholar 

  102. W. Zhang, T.E. Simos, A high-order two-step phase-fitted method for the numerical solution of the Schrödinger equation. Mediterr. J. Math. 13(6), 5177–5194 (2016)

    Article  Google Scholar 

  103. L. Zhang and T.E. Simos, An efficient numerical method for the solution of the Schrödinger equation. Adv. Math. Phys. 2016, Article ID 8181927, 20 http://dx.doi.org/10.1155/2016/8181927

  104. M. Dong, T.E. Simos, A new high algebraic order efficient finite difference method for the solution of the Schrödinger equation. Filomat 31(15), 4999–5012 (2017)

    Article  Google Scholar 

  105. R. Lin, T.E. Simos, A two-step method with vanished phase-lag and its derivatives for the numerical solution of the Schrödinger equation. Open Phys. 14, 628–642 (2016)

    Article  Google Scholar 

  106. H. Ning, T.E. Simos, A low computational cost eight algebraic order hybrid method with vanished phase-lag and its first, second, third and fourth derivatives for the approximate solution of the Schrödinger equation. J. Math. Chem. 53(6), 1295–1312 (2015)

    Article  CAS  Google Scholar 

  107. Z. Wang, T.E. Simos, An economical eighth-order method for the approximation of the solution of the Schrödinger equation. J. Math. Chem. 55, 717–733 (2017)

    Article  CAS  Google Scholar 

  108. J. Ma, T.E. Simos, An efficient and computational effective method for second order problems. J. Math. Chem. 55, 1649–1668 (2017)

    Article  CAS  Google Scholar 

  109. L. Yang, T.E. Simos, An efficient and economical high order method for the numerical approximation of the Schrödinger equation. J. Math. Chem. 55(9), 1755–1778 (2017)

    Article  CAS  Google Scholar 

  110. V.N. Kovalnogov, R.V. Fedorov, V.M. Golovanov, B.M. Kostishko, T.E. Simos, A four stages numerical pair with optimal phase and stability properties. J. Math. Chem. 56(1), 81–102 (2018)

    Article  CAS  Google Scholar 

  111. K. Yan, T.E. Simos, A finite difference pair with improved phase and stability properties. J. Math. Chem. 56(1), 170–192 (2018)

    Article  CAS  Google Scholar 

  112. J. Fang, C. Liu, T.E. Simos, A hybric finite difference pair with maximum phase and stability properties. J. Math. Chem. 56(2), 423–448 (2018)

    Article  CAS  Google Scholar 

  113. J. Yao, T.E. Simos, New finite difference pair with optimized phase and stability properties. J. Math. Chem. 56(2), 449–476 (2018)

    Article  CAS  Google Scholar 

  114. J. Zheng, C. Liu, T.E. Simos, A new two-step finite difference pair with optimal properties. J. Math. Chem. 56(3), 770–798 (2018)

    Article  CAS  Google Scholar 

  115. X. Shi, T.E. Simos, New five-stages finite difference pair with optimized phase properties. J. Math. Chem. 56(4), 982–1010 (2018)

    Article  CAS  Google Scholar 

  116. C. Liu, T.E. Simos, A five-stages symmetric method with improved phase properties. J. Math. Chem. 56(4), 1313–1338 (2018)

    Article  CAS  Google Scholar 

  117. J. Yao, T.E. Simos, New five-stages two-step method with improved characteristics. J. Math. Chem. 56(6), 1567–1594 (2018)

    Article  CAS  Google Scholar 

  118. K. Yan, T.E. Simos, New Runge–Kutta type symmetric two-step method with optimized characteristics. J. Math. Chem. 56(8), 2454–2484 (2018)

    Article  CAS  Google Scholar 

  119. Z. Chen, C. Liu, T.E. Simos, New three-stages symmetric two step method with improved properties for second order initial/boundary value problems. J. Math. Chem. 56(9), 2591–2616 (2018)

    Article  CAS  Google Scholar 

  120. R. Hao, T.E. Simos, New Runge-Kutta type symmetric two step finite difference pair with improved properties for second order initial and/or boundary value problems. J. Math. Chem. 56(10), 3014–3044 (2018)

    Article  CAS  Google Scholar 

  121. G.-H. Qiu, C. Liu, T.E. Simos, A new multistep method with optimized characteristics for initial and/or boundary value problems. J. Math. Chem. 57(1), 119–148 (2019)

    Article  CAS  Google Scholar 

  122. Th Monovasilis, Z. Kalogiratou, T.E. Simos, Trigonometrical fitting conditions for two derivative Runge–Kutta methods. Numer. Algorithms 79, 787–800 (2018)

    Article  Google Scholar 

  123. G. Wang, T.E. Simos, New multiple stages two-step complete in phase algorithm with improved characteristics for second order initial/boundary value problems. J. Math. Chem. 57(2), 494–515 (2019)

    Article  CAS  Google Scholar 

  124. N. Yang, T.E. Simos, New four stages multistep in phase algorithm with best possible properties for second order problems. J. Math. Chem. 57(3), 895–917 (2019)

    Article  CAS  Google Scholar 

  125. F. Hui, T.E. Simos, New multistage two-step complete in phase scheme with improved properties for quantum chemistry problems. J. Math. Chem. 57(4), 1088–1111 (2019)

    Article  CAS  Google Scholar 

  126. V.N. Kovalnogov, R.V. Fedorov, D.V. Suranov, T.E. Simos, Newmultiple stages scheme with improved properties for second order problems. J. Math. Chem. 57(1), 232–262 (2019)

    Article  CAS  Google Scholar 

  127. Z. Chen, C. Liu, C.-W. Hsu, T.E. Simos, A new multistage multistep full in phase algorithm with optimized charateristis for problems in chemistry. J. Math. Chem. 57(4), 1112–1139 (2019)

    Article  CAS  Google Scholar 

  128. V.N. Kovalnogov, R.V. Fedorov, A.A. Bondarenko, T.E. Simos, New hybrid two-step method with optimized phase and stability characteristics. J. Math. Chem. 56(8), 2302–2340 (2018)

    Article  CAS  Google Scholar 

  129. V.N. Kovalnogov, R.V. Fedorov, T.E. Simos, New hybrid symmetric two step scheme with optimized characteristics for second order problems. J. Math. Chem. 56(9), 2816–2844 (2018)

    Article  CAS  Google Scholar 

  130. C.J. Cramer, Essentials of Computational Chemistry (Wiley, Chichester, 2004)

    Google Scholar 

  131. F. Jensen, Introduction to Computational Chemistry (Wiley, Chichester, 2007)

    Google Scholar 

  132. A.R. Leach, Molecular Modelling—Principles and Applications (Pearson, London, 2001)

    Google Scholar 

  133. P. Atkins, R. Friedman, Molecular Quantum Mechanics (Oxford University Press, Oxford, 2011)

    Google Scholar 

  134. T.E. Simos, V.N. Kovalnogov, I.V. Shevchuk, Perspective of mathematical modeling and research of targeted formation of disperse phase clusters in working media for the next-generation power engineering technologies. AIP Conf. Proc. 1863, 560099 (2017)

    Article  CAS  Google Scholar 

  135. V.N. Kovalnogov, R.V. Fedorov, D.A. Generalov, Y.A. Khakhalev, A.N. Zolotov, Numerical research of turbulent boundary layer based on the fractal dimension of pressure fluctuations. AIP Conf. Proc. 738, 480004 (2016)

    Article  Google Scholar 

  136. V.N. Kovalnogov, R.V. Fedorov, T.V. Karpukhina, E.V. Tsvetova, Numerical analysis of the temperature stratification of the disperse flow. AIP Conf. Proc. 1648, 850033 (2015)

    Article  Google Scholar 

  137. N. Kovalnogov, E. Nadyseva, O. Shakhov, V. Kovalnogov, Control of turbulent transfer in the boundary layer through applied periodic effects. Izvestiya Vysshikh Uchebnykh Zavedenii Aviatsionaya Tekhnika 1, 49–53 (1998)

    Google Scholar 

  138. V.N. Kovalnogov, R.V. Fedorov, D.A. Generalov, Modeling and development of cooling technology of turbine engine blades. Int. Rev. Mech. Eng. 9(4), 331–335 (2015)

    Google Scholar 

  139. S. Kottwitz, LaTeX Cookbook (Packt Publishing Ltd., Birmingham, 2015), pp. 231–236

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. E. Simos.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highly Cited Researcher (https://clarivate.com/hcr/), Active Member of the European Academy of Sciences and Arts. Active Member of the European Academy of Sciences. Corresponding Member of European Academy of Arts, Sciences and Humanities.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 221 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, M., Simos, T.E. A multistage two-step fraught in phase scheme for problems in mathematical chemistry. J Math Chem 57, 1710–1731 (2019). https://doi.org/10.1007/s10910-019-01033-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10910-019-01033-0

Keywords

Mathematics Subject Classification

Navigation