Skip to main content
Log in

FM reconstruction of non-uniformly sampled protein NMR data at higher dimensions and optimization by distillation

  • Article
  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Abstract

Non-uniform sampling (NUS) enables recording of multidimensional NMR data at resolutions matching the resolving power of modern instruments without using excessive measuring time. However, in order to obtain satisfying results, efficient reconstruction methods are needed. Here we describe an optimized version of the Forward Maximum entropy (FM) reconstruction method, which can reconstruct up to three indirect dimensions. For complex datasets, such as NOESY spectra, the performance of the procedure is enhanced by a distillation procedure that reduces artifacts stemming from intense peaks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Barna JCJ, Laue ED, Mayger MR, Skilling J, Worrall SJP (1987) Exponential sampling, an alternative method for sampling in two-dimensional NMR experiments. J Magn Reson 73:69–77

    Google Scholar 

  • Chylla RA, Markley JL (1995) Theory and application of the maximum likelihood principle to NMR parameter estimation of multidimensional NMR data. J Biomol NMR 5:245–258

    Article  Google Scholar 

  • Coggins BE, Zhou P (2006) Polar Fourier transforms of radially sampled NMR data. J Magn Reson 182:84–95

    Article  ADS  Google Scholar 

  • Coggins BE, Zhou P (2008) High resolution 4-D spectroscopy with sparse concentric shell sampling and FFT-CLEAN. J Biomol NMR 42:225–239

    Article  Google Scholar 

  • Coggins BE, Venters RA, Zhou P (2005) Filtered backprojection for the reconstruction of a high-resolution (4, 2)D CH3–NH NOESY spectrum on a 29 kDa protein. J Am Chem Soc 127:11562–11563

    Article  Google Scholar 

  • Daniell GJ, Hore PJ (1989) Maximum entropy and NMR - a new approach. J Magn Reson 84:515–536

    Google Scholar 

  • Delaglio F, Grzesiek S, Vuister GW, Zhu G, Pfeifer J, Bax A (1995) NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J Biomol NMR 6:277–293

    Article  Google Scholar 

  • Frueh DP, Sun ZY, Vosburg DA, Walsh CT, Hoch JC, Wagner G (2006) Non-uniformly sampled double-TROSY hNcaNH experiments for NMR sequential assignments of large proteins. J Am Chem Soc 128:5757–5763

    Article  Google Scholar 

  • Gull S, Skilling J (1991) MEMSYS5 Quantified Maximum Entropy. Royston, England

    Google Scholar 

  • Gutmanas A, Jarvoll P, Orekhov VY, Billeter M (2002) Three-way decomposition of a complete 3D 15N-NOESY-HSQC. J Biomol NMR 24:191–201

    Article  Google Scholar 

  • Hoch JC (1989) Modern spectrum analysis in nuclear magnetic resonance: alternatives to the Fourier transform. Methods Enzymol 176:216–241

    Article  Google Scholar 

  • Hoch JC, Stern AS (1996) NMR data processing. Wiley-Liss, New York

    Google Scholar 

  • Högbom JA (1974) Aperture synthesis with a non-regular distribution of interferometer baselines. Astron Astrophys Suppl 15:417–426

    ADS  Google Scholar 

  • Hyberts SG, Heffron GJ, Tarragona NG, Solanky K, Edmonds KA, Luithardt H, Fejzo J, Chorev M, Aktas H, Colson K, Falchuk KH, Halperin JA, Wagner G (2007) Ultrahigh-resolution (1)H–(13)C HSQC spectra of metabolite mixtures using nonlinear sampling and forward maximum entropy reconstruction. J Am Chem Soc 129:5108–5116

    Article  Google Scholar 

  • Kazimierczuk K, Kozminski W, Zhukov I (2006a) Two-dimensional Fourier transform of arbitrarily sampled NMR data sets. J Magn Reson 179:323–328

    Article  ADS  Google Scholar 

  • Kazimierczuk K, Zawadzka A, Kozminski W, Zhukov I (2006b) Random sampling of evolution time space and Fourier transform processing. J Biomol NMR 36:157–168

    Article  Google Scholar 

  • Kim S, Szyperski T (2003) GFT NMR, a new approach to rapidly obtain precise high-dimensional NMR spectral information. J Am Chem Soc 125:1385–1393

    Article  Google Scholar 

  • Korzhneva DM, Ibraghimov IV, Billeter M, Orekhov VY (2001) MUNIN: application of three-way decomposition to the analysis of heteronuclear NMR relaxation data. J Biomol NMR 21:263–268

    Article  Google Scholar 

  • Kupce E, Freeman R (2004a) Projection-reconstruction technique for speeding up multidimensional NMR spectroscopy. J Am Chem Soc 126:6429–6440

    Article  Google Scholar 

  • Kupce E, Freeman R (2004b) Fast reconstruction of four-dimensional NMR spectra from plane projections. J Biomol NMR 28:391–395

    Article  Google Scholar 

  • Marion D (2005) Fast acquisition of NMR spectra using Fourier transform of non-equispaced data. J Biomol NMR 32:141–150

    Article  Google Scholar 

  • Orekhov VY, Ibraghimov IV, Billeter M (2001) MUNIN: a new approach to multi-dimensional NMR spectra interpretation. J Biomol NMR 20:49–60

    Article  Google Scholar 

  • Orekhov VY, Ibraghimov I, Billeter M (2003) Optimizing resolution in multidimensional NMR by three-way decomposition. J Biomol NMR 27:165–173

    Article  Google Scholar 

  • Rovnyak D, Frueh DP, Sastry M, Sun ZY, Stern AS, Hoch JC, Wagner G (2004a) Accelerated acquisition of high resolution triple-resonance spectra using non-uniform sampling and maximum entropy reconstruction. J Magn Reson 170:15–21

    Article  ADS  Google Scholar 

  • Rovnyak D, Hoch JC, Stern AS, Wagner G (2004b) Resolution and sensitivity of high field nuclear magnetic resonance spectroscopy. J Biomol NMR 30:1–10

    Article  Google Scholar 

  • Schmieder P, Stern AS, Wagner G, Hoch JC (1993) Application of nonlinear sampling schemes to COSY-type spectra. J Biomol NMR 3:569–576

    Article  Google Scholar 

  • Schmieder P, Stern AS, Wagner G, Hoch JC (1994) Improved resolution in triple-resonance spectra by nonlinear sampling in the constant-time domain. J Biomol NMR 4:483–490

    Article  Google Scholar 

  • Schmieder P, Stern AS, Wagner G, Hoch JC (1997) Quantification of maximum-entropy spectrum reconstructions. J Magn Reson 125:332–339

    Article  ADS  Google Scholar 

  • Shannon CE (1948) A mathematical theory of communication. Bell Syst Tech J 27:379–432, 623–656

    Google Scholar 

  • Shimba N, Stern AS, Craik CS, Hoch JC, Dotsch V (2003) Elimination of 13Calpha splitting in protein NMR spectra by deconvolution with maximum entropy reconstruction. J Am Chem Soc 125:2382–2383

    Article  Google Scholar 

  • Stern AS, Li KB, Hoch JC (2002) Modern spectrum analysis in multidimensional NMR spectroscopy: comparison of linear-prediction extrapolation and maximum-entropy reconstruction. J Am Chem Soc 124:1982–1993

    Article  Google Scholar 

  • Sun ZJ, Hyberts SG, Rovnyak D, Park S, Stern AS, Hoch JC, Wagner G (2005a) High-resolution aliphatic side-chain assignments in 3D HCcoNH experiments with joint H–C evolution and non-uniform sampling. J Biomol NMR 32:55–60

    Article  Google Scholar 

  • Sun ZY, Frueh DP, Selenko P, Hoch JC, Wagner G (2005b) Fast assignment of 15N-HSQC peaks using high-resolution 3D HNcocaNH experiments with non-uniform sampling. J Biomol NMR 33:43–50

    Article  Google Scholar 

  • Thakur JK, Arthanari H, Yang F, Pan SJ, Fan X, Breger J, Frueh DP, Gulshan K, Li DK, Mylonakis E, Struhl K, Moye-Rowley WS, Cormack BP, Wagner G, Naar AM (2008) A nuclear receptor-like pathway regulating multidrug resistance in fungi. Nature 452:604–609

    Article  ADS  Google Scholar 

  • Tugarinov V, Kay LE, Ibraghimov I, Orekhov VY (2005) High-resolution four-dimensional 1H–13C NOE spectroscopy using methyl-TROSY, sparse data acquisition, and multidimensional decomposition. J Am Chem Soc 127:2767–2775

    Article  Google Scholar 

  • Venters RA, Coggins BE, Kojetin D, Cavanagh J, Zhou P (2005) (4, 2)D Projection–reconstruction experiments for protein backbone assignment: application to human carbonic anhydrase II and calbindin D(28K). J Am Chem Soc 127:8785–8795

    Article  Google Scholar 

Download references

Acknowledgment

This research was supported by the National Institutes of Health (grants GM 47467 and EB 002026). We thank Dr. Jeffrey Hoch for fruitful discussion on the topic of this manuscript and Mr. Gregory Heffron for assistance with the spectrometers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerhard Wagner.

Additional information

Software availability

The FM reconstruction software is available upon request.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hyberts, S.G., Frueh, D.P., Arthanari, H. et al. FM reconstruction of non-uniformly sampled protein NMR data at higher dimensions and optimization by distillation. J Biomol NMR 45, 283–294 (2009). https://doi.org/10.1007/s10858-009-9368-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10858-009-9368-1

Keywords

Navigation