Skip to main content
Log in

High resolution 4-D spectroscopy with sparse concentric shell sampling and FFT-CLEAN

  • Article
  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Abstract

Recent efforts to reduce the measurement time for multidimensional NMR experiments have fostered the development of a variety of new procedures for sampling and data processing. We recently described concentric ring sampling for 3-D NMR experiments, which is superior to radial sampling as input for processing by a multidimensional discrete Fourier transform. Here, we report the extension of this approach to 4-D spectroscopy as Randomized Concentric Shell Sampling (RCSS), where sampling points for the indirect dimensions are positioned on concentric shells, and where random rotations in the angular space are used to avoid coherent artifacts. With simulations, we show that RCSS produces a very low level of artifacts, even with a very limited number of sampling points. The RCSS sampling patterns can be adapted to fine rectangular grids to permit use of the Fast Fourier Transform in data processing, without an apparent increase in the artifact level. These artifacts can be further reduced to the noise level using the iterative CLEAN algorithm developed in radioastronomy. We demonstrate these methods on the high resolution 4-D HCCH-TOCSY spectrum of protein G’s B1 domain, using only 1.2% of the sampling that would be needed conventionally for this resolution. The use of a multidimensional FFT instead of the slow DFT for initial data processing and for subsequent CLEAN significantly reduces the calculation time, yielding an artifact level that is on par with the level of the true spectral noise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Barna JCJ, Laue ED (1987) Conventional and exponential sampling for 2D NMR experiments with application to a 2D NMR spectrum of a protein. J Magn Reson 75:384–389

    Google Scholar 

  • Barna JCJ, Laue ED, Mayger MR, Skilling J, Worrall SJP (1987) Exponential sampling, an alternative method for sampling in two-dimensional NMR experiments. J Magn Reson 73:69–77

    Google Scholar 

  • Barna JCJ, Tan SM, Laue ED (1988) Use of CLEAN in conjunction with selective data sampling for 2D NMR experiments. J Magn Reson 78:327–332

    Google Scholar 

  • Bretthorst GL (2001) Nonuniform sampling: bandwidth and aliasing. In: Rychert JT, Erickson GJ, Smith CR (eds) Bayesian inference and maximum entropy methods in science and engineering. American Institute of Physics, Melville, NY, pp 1–28

    Google Scholar 

  • Coggins BE, Venters RA, Zhou P (2004) Generalized reconstruction of n-D NMR spectra from multiple projections: application to the 5-D HACACONH spectrum of protein G B1 domain. J Am Chem Soc 126:1000–1001

    Article  Google Scholar 

  • Coggins BE, Venters RA, Zhou P (2005) Filtered backprojection for the reconstruction of a high-resolution (4, 2)D CH3-NH NOESY spectrum on a 29 kDa protein. J Am Chem Soc 127:11562–11563

    Article  Google Scholar 

  • Coggins BE, Zhou P (2006a) Polar Fourier transforms of radially sampled NMR data. J Magn Reson 182:84–95

    Article  ADS  Google Scholar 

  • Coggins BE, Zhou P (2006b) PR-CALC: a program for the reconstruction of NMR spectra from projections. J Biomol NMR 34:179–195

    Article  Google Scholar 

  • Coggins BE, Zhou P (2007) Sampling of the NMR time domain along concentric rings. J Magn Reson 184:219–233

    Article  Google Scholar 

  • Davies SJ, Bauer C, Hore PJ, Freeman R (1988) Resolution enhancement by nonlinear data processing. “HOGWASH” and the maximum entropy method. J Magn Reson 76:476–493

    Google Scholar 

  • Delaglio F, Grzesiek S, Vuister GW, Zhu G, Pfeifer J, Bax A (1995) NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J Biomol NMR 6:277–293

    Article  Google Scholar 

  • Ding K, Gronenborn AM (2002) Novel 2D triple-resonance NMR experiments for sequential resonance assignments of proteins. J Magn Reson 156:262–268

    Article  ADS  Google Scholar 

  • Eghbalnia HR, Bahrami A, Tonelli M, Hallenga K, Markley JL (2005) High-resolution iterative frequency identification for NMR as a general strategy for multidimensional data collection. J Am Chem Soc 127:12528–12536

    Article  Google Scholar 

  • Erber T, Hockney GM (1991) Equilibrium configurations of N equal charges on a sphere. J Phys A: Math Gen 24:L1369–L1377

    Article  ADS  Google Scholar 

  • Freeman R, Kupče E (2003) New methods for fast multidimensional NMR. J Biomol NMR 27:101–113

    Article  Google Scholar 

  • Freeman R, Kupče E (2004) Distant echoes of the accordion: reduced dimensionality, GFT-NMR, and projection-reconstruction of multidimensional spectra. Concepts in Magnetic Resonance 23A:63–75

    Article  Google Scholar 

  • Hiller S, Fiorito F, Wüthrich K, Wider G (2005) Automated projection spectroscopy (APSY). Proc Natl Acad Sci USA 102:10876–10881

    Article  ADS  Google Scholar 

  • Hoch JC, Stern AS (1996) NMR data processing. Wiley-Liss, New York

    Google Scholar 

  • Hoch JC, Maciejewski MW, Filipovic B (2008) Randomization improves sparse sampling in multidimensional NMR. J Magn Reson 193:317–320

    Article  ADS  Google Scholar 

  • Högbom JA (1974) Aperture synthesis with a non-regular distribution of interferometer baselines. Astron Astrophys Suppl 15:417–426

    ADS  Google Scholar 

  • Kazimierczuk K, Koźmiński W, Zhukov I (2006a) Two-dimensional Fourier transform of arbitrarily sampled NMR data sets. J Magn Reson 179:323–328

    Article  ADS  Google Scholar 

  • Kazimierczuk K, Zawadzka A, Koźmiński W, Zhukov I (2006b) Random sampling of evolution time space and Fourier transform processing. J Biomol NMR 36:157–168

    Article  Google Scholar 

  • Kazimierczuk K, Zawadzka A, Koźmiński W, Zhukov I (2007) Lineshapes and artifacts in Multidimensional Fourier Transform of arbitrary sampled NMR data sets. J Magn Reson 188:344–356

    Article  ADS  Google Scholar 

  • Kazimierczuk K, Zawadzka A, Koźmiński W (2008) Optimization of random time domain sampling in multidimensional NMR. J Magn Reson 192:123–130

    Article  ADS  Google Scholar 

  • Keeler J (1984) Elimination of truncation artifacts from NMR spectra. Application to carbon-13 multiplicity determination by two-dimensional spectroscopy. J Magn Reson 56:463–470

    Google Scholar 

  • Kim S, Szyperski T (2003) GFT NMR, a new approach to rapidly obtain precise high-dimensional NMR spectral information. J Am Chem Soc 125:1385–1393

    Article  Google Scholar 

  • Koźmiński W, Zhukov I (2003) Multiple quadrature detection in reduced dimensionality experiments. J Biomol NMR 26:157–166

    Article  Google Scholar 

  • Kupče E, Freeman R (2003) Reconstruction of the three-dimensional NMR spectrum of a protein from a set of plane projections. J Biomol NMR 27:383–387

    Article  Google Scholar 

  • Kupče E, Freeman R (2004) The Radon transform: a new scheme for fast multidimensional NMR. Concepts in Magnetic Resonance 22A:4–11

    Article  Google Scholar 

  • Kupče E, Freeman R (2005) Fast multidimensional NMR: radial sampling of evolution space. J Magn Reson 173:317–321

    Article  ADS  Google Scholar 

  • Malmodin D, Billeter M (2005a) Signal identification in NMR spectra with coupled evolution periods. J Magn Reson 176:47–53

    Article  ADS  Google Scholar 

  • Malmodin D, Billeter M (2005b) Multiway decomposition of NMR spectra with coupled evolution periods. J Am Chem Soc 127:13486–13487

    Article  Google Scholar 

  • Marion D (2006) Processing of ND NMR spectra sampled in polar coordinates: a simple Fourier transform instead of a reconstruction. J Biomol NMR 36:45–54

    Article  Google Scholar 

  • Mobli M, Stern AS, Hoch JC (2006) Spectral reconstruction methods in fast NMR: reduced dimensionality, random sampling and maximum entropy. J Magn Reson 182:96–105

    Article  ADS  Google Scholar 

  • Orekhov VY, Ibraghimov IV, Billeter M (2001) MUNIN: a new approach to multi-dimensional NMR spectra interpretation. J Biomol NMR 20:49–60

    Article  Google Scholar 

  • Orekhov VY, Ibraghimov I, Billeter M (2003) Optimizing resolution in multidimensional NMR by three-way decomposition. J Biomol NMR 27:165–173

    Article  Google Scholar 

  • Pannetier N, Houben K, Blanchard L, Marion D (2007) Optimized 3D-NMR sampling for resonance assignment of partially unfolded proteins. J Magn Reson 186:142–149

    Article  ADS  Google Scholar 

  • Press WH, Flannery BP, Teukolsky SA, Vetterling WT (1992) Numerical recipes in C: the art of scientific computing. Cambridge University Press, Cambridge

    Google Scholar 

  • Rovnyak D, Frueh DP, Sastry M, Sun ZY, Stern AS, Hoch JC, Wagner G (2004) Accelerated acquisition of high resolution triple-resonance spectra using non-uniform sampling and maximum entropy reconstruction. J Magn Reson 170:15–21

    Article  ADS  Google Scholar 

  • Schmieder P, Stern AS, Wagner G, Hoch JC (1994) Improved resolution in triple-resonance spectra by nonlinear sampling in the constant-time domain. J Biomol NMR 4:483–490

    Article  Google Scholar 

  • Shaka AJ, Keeler J, Freeman R (1984) Separation of chemical shifts and spin coupling in proton NMR. Elimination of dispersion signals from two-dimensional spectra. J Magn Reson 56:294–313

    Google Scholar 

  • Simorre JP, Brutscher B, Caffrey MS, Marion D (1994) Assignment of NMR spectra of proteins using triple-resonance two-dimensional experiments. J Biomol NMR 4:325–333

    Article  Google Scholar 

  • Szyperski T, Wider G, Bushweller JH, Wüthrich K (1993a) 3D 13C–15N-heteronuclear two-spin coherence spectroscopy for polypeptide backbone assignments in 13C–15N-double-labeled proteins. J Biomol NMR 3:127–132

    Google Scholar 

  • Szyperski T, Wider G, Bushweller JH, Wüthrich K (1993b) Reduced dimensionality in triple-resonance NMR experiments. J Am Chem Soc 115:9307–9308

    Article  Google Scholar 

  • Venters RA, Coggins BE, Kojetin D, Cavanagh J, Zhou P (2005) (4, 2)D Projection—reconstruction experiments for protein backbone assignment: application to human carbonic anhydrase II and calbindin D(28 K). J Am Chem Soc 127:8785–8795

    Article  Google Scholar 

  • Würtz P, Hellman M, Tossavainen H, Permi P (2006) Towards unambiguous assignment of methyl-containing residues by double and triple sensitivity-enhanced HCCmHm-TOCSY experiments. J Biomol NMR 36:13–26

    Article  Google Scholar 

  • Yoon JW, Godsill S, Kupče E, Freeman R (2006) Deterministic and statistical methods for reconstructing multidimensional NMR spectra. Magn Reson Chem 44:197–209

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Institutes of Health/National Institute of Allergy and Infectious Diseases (2R01AI055588), the Whitehead Foundation and the Duke University Bridge Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pei Zhou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Coggins, B.E., Zhou, P. High resolution 4-D spectroscopy with sparse concentric shell sampling and FFT-CLEAN. J Biomol NMR 42, 225–239 (2008). https://doi.org/10.1007/s10858-008-9275-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10858-008-9275-x

Keywords

Navigation