Skip to main content
Log in

Theory and application of the maximum likelihood principle to NMR parameter estimation of multidimensional NMR data

  • Research Papers
  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Summary

A general theory has been developed for the application of the maximum likelihood (ML) principle to the estimation of NMR parameters (frequency and amplitudes) from multidimensional time-domain NMR data. A computer program (ChiFit) has been written that carries out ML parameter estimation in the D-1 indirectly detected dimensions of a D-dimensional NMR data set. The performance of this algorithm has been tested with experimental three-dimensional (HNCO) and four-dimensional (HN(CO)-CAHA) data from a small protein labeled with 13C and 15N. These data sets, with different levels of digital resolution, were processed using ChiFit for ML analysis and employing conventional Fourier transform methods with prior extrapolation of the time-domain dimensions by linear prediction. Comparison of the results indicates that the ML approach provides superior frequency resolution compared to conventional methods, particularly under conditions of limited digital resolution in the time-domain input data, as is characteristic of D-dimensional NMR data of biomolecules. Close correspondence is demonstrated between the results of analyzing multidimensional time-domain NMR data by Fourier transformation, Bayesian probability theory [Chylla, R.A. and Markley, J.L. (1993) J. Biomol. NMR, 3, 515–533], and the ML principle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

FT:

Fourier transformation

ML:

maximum likelihood

MLD:

minimum description length

FID:

free induction decay

References

  • Barkhuijsen, J., DeBeer, W.M., Bovee, W.M.M.J. and VanOrmondt, D. (1985) J. Magn. Reson., 61, 465–481.

    Google Scholar 

  • Bloch, F., Hansen, W.W. and Packard, M.E. (1946) Phys. Rev., 70, 460–474.

    Article  Google Scholar 

  • Bretthorst, G.L. (1990a) J. Magn. Reson., 88, 533–551.

    Google Scholar 

  • Bretthorst, G.L. (1990b) J. Magn. Reson., 88, 552–570.

    Google Scholar 

  • Bretthorst, G.L. (1990c) J. Magn. Reson., 88, 571–595.

    Google Scholar 

  • Chylla, R.A. (1994) unpublished documentation. Available through the National Magnetic Resonance Facility (NMRFAM) software section of the Internet GOPHER utility at gopher://gopher.nmrfam. wisc.edu/11/Software/Chifit.

  • Chylla, R.A. and Markley, J.L. (1993) J. Biomol. NMR, 3, 515–533.

    Google Scholar 

  • Gesmar, H. and Led, J.J. (1989) J. Magn. Reson., 83, 53–64.

    Google Scholar 

  • Girvin, M.E. and Fillingame, R.H. (1993) Biochemistry, 32, 12167–12177.

    Google Scholar 

  • Kay, L.E., Ikura, M., Tschudin, R. and Bax, A. (1990) J. Magn. Reson., 89, 496–514.

    Google Scholar 

  • Kay, L.E., Wittekind, M., McCoy, M.A., Friedrichs, M.S. and Mueller, L. (1992) J. Magn. Reson., 98, 443–450.

    Google Scholar 

  • Kumaresan, R. and Tufts, D.W. (1982) IEEE Trans. Acoust. Speech Signal Processing, 30, 833–840.

    Google Scholar 

  • Led, J.J. and Gesmar, H. (1991) J. Biomol. NMR, 1, 237–246.

    Google Scholar 

  • Marquardt, D.W. (1963) J. Soc. Ind. Appl. Math., 11, 431–441.

    Google Scholar 

  • Miller, M.I. and Greene, A.S. (1989) J. Magn. Reson., 83, 525–548.

    Google Scholar 

  • Miller, M.I., Chen, S.C., Kuefler, D.A. and D'Avignon, D.A. (1993) J. Magn. Reson. Ser. A, 104, 247–257.

    Google Scholar 

  • Mooberry, E.S., Abildgaard, F. and Markley, J.L. (1994) Methods Enzymol., 2, 247–256.

    Google Scholar 

  • OlsonJr., J.B. and Markley, J.L. (1994) J. Biomol. NMR, 4, 385–410.

    Google Scholar 

  • Press, W.H., Flannery, B.P., Teukolsky, S.A. and Vetterling, W.T. (1988) Numerical Recipes in C, Cambridge University Press, New York, NY, pp. 540–547.

    Google Scholar 

  • Reddy, V.U. and Birader, L.S. (1993) IEEE Trans. Signal Processing, 41, 2872–2881.

    Google Scholar 

  • Zhu, G. and Bax, A. (1990) J. Magn. Reson., 90, 405–410.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Software for carrying out the multidimensional ML estimation is available from the National Magnetic Resonance Facility software section of the Internet GOPHER utility at gopher://gopher.nmrfam.wisc.edu/11/Software/Chifit.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chylla, R.A., Markley, J.L. Theory and application of the maximum likelihood principle to NMR parameter estimation of multidimensional NMR data. J Biomol NMR 5, 245–258 (1995). https://doi.org/10.1007/BF00211752

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00211752

Keywords

Navigation