Skip to main content
Log in

Fast acquisition of NMR spectra using Fourier transform of non-equispaced data

  • Article
  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Abstract

Rapid acquisition of high-resolution 2D and 3D NMR spectra is essential for studying biological macromolecules. In order to minimize the experimental time, a non-linear sampling scheme is proposed for the indirect dimensions of multidimensional experiments. These data can be processed using the algorithm proposed by Dutt and Rokhlin (Appl. Comp. Harm. Anal. 1995, 2, 85–100) for fast Fourier transforms of non equispaced data. Examples of 1H−15N HSQC spectra are shown, where crowded correlation peaks can be resolved using non-linear acquisition. Simulated data have been used to analyze the artefacts produced by the Lagrange interpolation. As compared to non-linear processing methods, this algorithm is simple and highly robust since no parameters need to be adjusted by the user.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

LP:

linear prediction

MEM:

maximum entropy method.

References

  • J.C.J. Barna E.D. Laue M.R. Mayger J. Skilling S.J.P. Worrall (1987) J. Magn. Reson 73 69–77

    Google Scholar 

  • B. Brutscher J.-P. Simorre M. Caffrey D. Marion (1994) J. Magn. Reson. B 105 77–82 Occurrence Handle10.1006/jmrb.1994.1104

    Article  Google Scholar 

  • F. Delaglio S. Grzesiek G.W. Vuister G. Zhu J. Pfeifer A. Bax (1995) J. Biomol. NMR 6 277–293 Occurrence Handle10.1007/BF00197809 Occurrence Handle8520220

    Article  PubMed  Google Scholar 

  • A. Dutt V. Rokhlin (1995) Appl. Comp. Harm. Anal 2 85–100 Occurrence Handle10.1006/acha.1995.1007

    Article  Google Scholar 

  • L. Frydman T. Scherf A. Lupulescu (2002) Proc. Natl. Acad. Sci. USA 99 15858–15862 Occurrence Handle10.1073/pnas.252644399 Occurrence Handle12461169

    Article  PubMed  Google Scholar 

  • H. Gesmar J.J. Led (1989) J. Magn. Reson 83 53–64

    Google Scholar 

  • J.C. Hoch A.S. Stern (2001) Meth. Enzymol 338 159–78 Occurrence Handle11460547

    PubMed  Google Scholar 

  • H. Hu A.A. De Angelis V.A. Mandelshtam A.J. Shaka (2000) J. Magn. Reson 144 357–366 Occurrence Handle10.1006/jmre.2000.2066 Occurrence Handle10828203

    Article  PubMed  Google Scholar 

  • E. Kupce R. Freeman (2004) J. Am. Chem. Soc 126 6429–6440 Occurrence Handle10.1021/ja049432q Occurrence Handle15149240

    Article  PubMed  Google Scholar 

  • S. Macura Y. Huang D. Suter R.R. Ernst (1981) J. Magn. Reson 43 259–281

    Google Scholar 

  • G. Otting H. Widmer G. Wagner K. Wüthrich (1986) J. Magn. Reson 66 187–193

    Google Scholar 

  • S. Ollagnier-de Choudens L. Nachin Y. Sanakis L. Loiseau F. Barras M. Fontecave (2003) J. Biol. Chem 278 17993–18001 Occurrence Handle10.1074/jbc.M300285200 Occurrence Handle12637501

    Article  PubMed  Google Scholar 

  • V.Y. Orekhov I.V. Ibraghimov M. Billeter (2001) J. Biomol. NMR 20 49–60 Occurrence Handle10.1023/A:1011234126930 Occurrence Handle11430755

    Article  PubMed  Google Scholar 

  • Potts, D., Steidl, G. and Tasche, M. (1998) In Modern Sampling Theory: Mathematics and Applications. Benedetto, J.J. and Ferreira, P., (Eds.), Birkhäuser Publishing Ltd. Basel, Switzerland, 249–274.

  • D. Rovnyak J.C. Hoch A.S. Stern G. Wagner (2004) J. Biomol. NMR 30 1–10 Occurrence Handle10.1023/B:JNMR.0000042946.04002.19 Occurrence Handle15452430

    Article  PubMed  Google Scholar 

  • D. Rovnyak C. Filip B. Itin A.S. Stern G. Wagner R.G. Griffin J.C. Hoch (2003) J. Magn. Reson 161 43–55 Occurrence Handle10.1016/S1090-7807(02)00189-1 Occurrence Handle12660110

    Article  PubMed  Google Scholar 

  • J.-P. Simorre B. Brutscher M. Caffrey D. Marion (1994) J. Biomol. NMR 4 325–333 Occurrence Handle10.1007/BF00179343 Occurrence Handle8019140

    Article  PubMed  Google Scholar 

  • A.S. Stern K.-B. Li J.C. Hoch (2002) J. Amer. Chem. Soc 124 1982–1993 Occurrence Handle10.1021/ja011669o

    Article  Google Scholar 

  • T. Szyperski G. Wider J.H. Bushweller K. Wüthrich (1993a) J. Biomol. NMR 3 127–132

    Google Scholar 

  • T. Szyperski G. Wider J.H. Bushweller K. Wüthrich (1993b) J. Am. Chem. Soc 115 9307–9308 Occurrence Handle10.1021/ja00073a064

    Article  Google Scholar 

  • T. Szyperski D.C. Yeh D.K. Sukumaran H.N. Moseley G.T. Montelione (2002) Proc. Natl. Acad. Sci. USA 99 8009–8014 Occurrence Handle10.1073/pnas.122224599 Occurrence Handle12060747

    Article  PubMed  Google Scholar 

  • J. Tang J.R. Morris (1988) J. Magn. Reson 78 23–30

    Google Scholar 

  • V. Tugarinov R. Muhandiram A. Ayed L.E. Kay (2002) J. Am. Chem. Soc 124 10025–10035 Occurrence Handle10.1021/ja0205636 Occurrence Handle12188667

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dominique Marion.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marion, D. Fast acquisition of NMR spectra using Fourier transform of non-equispaced data. J Biomol NMR 32, 141–150 (2005). https://doi.org/10.1007/s10858-005-5977-5

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10858-005-5977-5

Keywords

Navigation