Skip to main content
Log in

Phycomolecule-coated silver nanoparticles and seaweed extracts induced high-frequency somatic embryogenesis and plant regeneration from Gloriosa superba L.

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

An efficient protocol for somatic embryogenesis and plant regeneration from rhizome explants of Gloriosa superba L. was developed using various plant growth regulators (PGRs), Ulva lactuca extracts (ULE), and phycomolecule-coated U. lactuca silver nanoparticles (ULAgNPs). Callus was initiated from rhizome explants on the Murashige and Skoog (MS) medium supplemented with various concentrations of 2,4-dichlorophenoxyacetic acid (1.0–5.0 mg L−1), α-naphthaleneacetic acid (NAA) (0.5 mg L−1), ULE (10–50%), and ULAgNPs (0.1–0.5 mg L−1). Callus was cultured on MS medium fortified with various concentrations and combinations of 6-benzylaminopurine (BAP) (0.5–2.5 mg L−1), kinetin (KIN) (0.5–2.5 mg L−1), ULAgNPs (0.1–0.5 mg L−1), and 20% ULE along with 0.5 mg L−1 NAA for the development of somatic embryos (SEs). The maximum percentage of embryo maturation (100%) was observed on the medium containing 0.5 mg L−1 ULAgNPs, 2.0 mg L−1 BAP, 0.5 mg L−1 abscisic acid (ABA), 0.5 mg L−1 silver nitrate (AgNO3), and 20% ULE. The highest percentage of embryo germination (86.1%) was noticed on the MS medium containing 0.3 mg L−1 ULAgNPs, 5.0 mg L−1 gibberellic acid (GA3), 2.0 mg L−1 BAP, 0.5 mg L−1 adenine sulfate (AdS), and 20% ULE. Well-rooted plantlets were successfully acclimatized in the greenhouse with 70% survival rate. Results suggest that U. lactuca extract-derived silver nanoparticles could be used as biostimulants for the enhancement of somatic embryogenesis and plant regeneration rate in G. superba.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Ade R, Rai MK (2009) Review: current advances in Gloriosa superba L. Biodiversity 10:210–214

    Article  Google Scholar 

  • Bellet P, Gaignault JC (1985) Le Gloriosa superba L. et la production de substances colchiciniques. Ann Pharm Fr 43:345–347

    CAS  PubMed  Google Scholar 

  • Bhagat N (2011) Conservation of endangered medicinal plant (Acorus calamus) through plant tissue culture. J Pharm 2:21–24

    Google Scholar 

  • Cangahuala Inocente GC, Vesco LLD, Steinmacher D, Torres AC, Guerra MP (2007) Improvements in somatic embryogenesis protocol in Feijoa (Acca sellowiana (Berg) Burret): induction, conversion and synthetic seeds. Sci Hort 111:228–234

    Article  CAS  Google Scholar 

  • Carloni E, Ribotta A, Colomba EL, Griffa S, Quiroga M, Tommasino E, Grunberg K (2014) Somatic embryogenesis from in vitro anther culture of apomictic buffel grass genotypes and analysis of regenerated plants using flow cytometry. Plant Cell Tissue Organ Cult 117:311–322

    Article  Google Scholar 

  • Crouch IJ, van Staden J (1993) Evidence for the presence of plant growth regulators in commercial seaweed products. Plant Growth Regul 13:21–29

  • Das G, Rout GR (2002) Plant regeneration through somatic embryogenesis in leaf derived callus of Plumbago resea. Biol Plant 45:299–302

    Article  Google Scholar 

  • Fernando SC, Gamage CKA (2000) Abscisic acid induced somatic embryogenesis in immature embryo explants of coconut (Cocos nucifera L.) Plant Sci 151:193–198

    Article  CAS  PubMed  Google Scholar 

  • Guo Y, Zhang ZX (2005) Establishment and plant regenerations of somatic embryogenic cell suspension cultures of the Zingiber officinale Rosc. Sci Hort 107:90–96

    Article  CAS  Google Scholar 

  • Haque SM, Ghosh B (2014) Somatic embryogenesis and synthetic seed production—a biotechnological approach for true-to-type propagation and in vitro conservation of an ornamental bulbaceous plant Drimiopsis kirkii Baker. Appl Biochem Biotechnol 172:4013–4024

    Article  CAS  PubMed  Google Scholar 

  • Hernández-Herrera RM, Santacruz-Ruvalcaba F, Ruiz-López MA, Norrie J, Hernández-Carmona G (2014) Effect of liquid seaweed extracts on growth of tomato seedlings (Solanum lycopersicum L.). J Appl Phycol 26:619–628

    Article  Google Scholar 

  • Jadhav SY, Hegde BA (2001) Somatic embryogenesis and plant regeneration in Gloriosa L. Ind J Exp Biol 39:943–946

    CAS  Google Scholar 

  • Jana S, Shekhawat GS (2011) Critical review on medicinally potent plant species: Gloriosa superba. Fitoterapia 82:293–301

    Article  CAS  PubMed  Google Scholar 

  • Jha S, Mitra GC, Sen S (1984) In vitro regeneration from bulb explants of Indian squill. Plant Cell Tissue Organ Cult 3:91–100

    Article  Google Scholar 

  • Junaid A, Mujib A, Bhat MA, Sharma MP, Samaj J (2007) Somatic embryogenesis and plant regeneration in Catharanthus roseus. Biol Plant 51:641–646

    Article  CAS  Google Scholar 

  • Kaviraj CP, Kiran G, Venugopal RB, KaviKishor PB, Rao S (2006) Effective somatic embryogenesis and plant regeneration from cotyledonary explants of green gram [Vigna radiata (L.) Wilezek.] – a recalcitrant grain legume. In Vitro Cell Develop Biol – Plant. 42:134–138

  • Khan W, Hiltz D, Critchley AT, Prithiviraj B (2011) Bioassay to detect Ascophyllum nodosum extract-induced cytokinin-like activity in Arabidopsis thaliana. J Appl Phycol 23:409–414

    Article  Google Scholar 

  • Khan W, Rayirath UP, Subramanian S, Jithesh MN, Rayorath P, Hodges DM, Critchley AT, Craigie JS, Norrie J, Prithivraj B (2009) Seaweed extracts as biostimulants of plant growth and development. Plant Growth Regul 28:386–399

    Article  CAS  Google Scholar 

  • Kong L, von Aderkas P (2007) Genotype effects on ABA consumption and somatic embryo maturation in interior spruce (Picea glaucaxengelmanni). J Exp Bot 58:1525–1531

    Article  CAS  PubMed  Google Scholar 

  • Kothari-Chajer A, Sharma M, Kachhwaha S, Kothari SL (2008) Micronutrient optimization results into highly improved in vitro plant regeneration in kodo (Paspalum scrobiculatum L.) and finger millets (Eleusine coracana (L.) Gaertn.). Plant Cell Tissue Organ Cult 94:105–112

    Article  CAS  Google Scholar 

  • Kumar V, Parvatam G, Ravishankar GA (2009) AgNO3—a potential regulator of ethylene activity and plant growth modulator. Elect J Biotechnol 12:1–15

    Google Scholar 

  • Lakshmanan P, Taji A (2000) Somatic embryogenesis in leguminous plants. Plant Biol 2:136–148

    Article  CAS  Google Scholar 

  • Lakshmi SR, Benjamin JHF, Kumar TS, Murthy GVS, Rao MV (2013) Organogenesis from in vitro-derived leaf and internode explants of Hoya wightii ssp. palniensis-a vulnerable species of Western Ghats. Braz Arch Biol Technol 56:421–430

    Article  Google Scholar 

  • Lema-Rumińska J, Goncerzewicz K, Gabriel M (2013) Influence of abscisic acid and sucrose on somatic embryogenesis in cactus (Copiapoa tenuissima Ritt. forma mostruosa). The Scientific World J. https://doi.org/10.1155/2013/513985

  • Lincy AK, Remashree AB, Sasikumar B (2009) Indirect and direct somatic embryogenesis from aerial stem explants of ginger (Zingiber officinale Rosc.). Acta Bot Croat 68:93–103

    CAS  Google Scholar 

  • Madhavan M, Joseph JP (2008) Direct somatic embryogenesis in Gloriosa superba L. an endangered medicinal plant of India. Plant Cell Biotechnol. Mol Biol 9:7–12

    CAS  Google Scholar 

  • Mancuso S, Azzarello E, Mugnai S, Briand X (2006) Marine bioactive substances (IPA extract) improve ion fluxes and water stress tolerance in potted Vitis vinifera plants. Adv Hort Sci 20:156–161

    Google Scholar 

  • Marinangeli P (2016) Somatic embryogenesis of Lilium from microbulb transverse thin cell layers. In: Germana MA, Lambardi M (eds) In vitro embryogenesis in higher plants. Springer, New York, pp 387–394

    Chapter  Google Scholar 

  • Montero-Córtes M, Sáenz L, Córdova I, Quiroz A, Verdeil JL, Oropeza C (2010) GA3 stimulates the formation and germination of somatic embryos and the expression of a KNOTTED-like homeobox gene of Cocos nucifera (L.). Plant Cell Rep 29:1049–1059

    Article  PubMed  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Naing AH, Kim CK, Yun BJ, Jin JY, Lim KB (2013) Primary and secondary somatic embryogenesis in Chrysanthemum cv. Euro. Plant Cell Tissue Organ Cult 112:361–368

    Article  Google Scholar 

  • Nikhila GS, Sangeetha G, Nair AG, Pradeesh S, Swapna TS (2014) High frequency embryogenesis and organogenesis in Gloriosa superba L.—a plant in need of conservation. J Aquat Biol Fish 2:398–402

    Google Scholar 

  • Okamura M, Taniguchi T, Kondo T (2001) Efficient embryogenic callus induction and plant regeneration from embryogenic axis explants in Quercus acutissima. J. Forest Res 6:63–66

    Article  Google Scholar 

  • Priyadharshini RI, Prasannaraj G, Geetha N, Venkatachalam P (2014) Microwave-mediated extracellular synthesis of metallic silver and zinc oxide nanoparticles using macro-algae (Gracilaria edulis) extracts and its anticancer activity against human PC3 cell lines. Appl Biochem Biotech 174:2777–2790

    Article  CAS  Google Scholar 

  • Pullman GS, Gupta PK, Timmis R, Carpenter C, Kreitinger M, Welty E (2005) Improved Norway spruce somatic embryo development through the use of abscisic acid combined with activated carbon. Plant Cell Rep 24:271–279

    Article  CAS  PubMed  Google Scholar 

  • Qureshi JA, Kartha KK, Abrams SR, Steinhauer L (1989) Modulation of somatic embryogenesis in early and late stage embryos of wheat (Triticum aestivum L.) under the influence of (9)-abscisic acid and its analogs. Plant Cell Tissue Organ Cult 18:55–69

    Article  CAS  Google Scholar 

  • Rajasekaran K, Hein MB, Vasil IK (1987) Endogenous abscisic acid and indole-3-acetic acid and somatic embryogenesis in cultured leaf explants of Pannisetum purpureum Schum. Plant Physiol 84:47–51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rajesh M, Sivanandhan G, Subramanyam K, Kapildev G, Jaganath B, Kasthurirengan S, Manickavasagam M, Ganapathi A (2014) Establishment of somatic embryogenesis and podophyllotoxin production in liquid shake cultures of Podophyllum hexandrum Royle. Indust Crop Prod 60:66–74

    Article  CAS  Google Scholar 

  • Ramakrishna D, Shasthree T (2016) High efficient somaticembryogenesis development from leaf cultures of Citrullus colocynthis (L.) Schrad for generating true type clones. Physiol Mol Biol Plant 22:279–285

  • Rameshkumar R, Largia MJV, Satish L, Shilpa J, Ramesh M (2017) In vitro mass propagation and conservation of Nilgirianthus ciliatus through nodal explants: a globally endangered, high trade medicinal plant of Western Ghats. Plant Biosyst 151:204–211

    Article  Google Scholar 

  • Rency AS, Satish L, Pandian S, Rathinapriya P, Ramesh M (2017) In vitro propagation and genetic fidelity analysis of alginate-encapsulated Bacopa monnieri shoot tips using Gracilaria salicornia extracts. J Appl Phycol 29:481–494

    Article  CAS  Google Scholar 

  • Sakhanokho HF, Rajasekaran K, Kelley RY (2009) Somatic embryogenesis in Hedychium bousigonianum. Hort Sci 44:1487–1490

    Google Scholar 

  • Satish L, Rameshkumar R, Rathinapriya P, Pandian S, Rency AS, Sunitha T, Ramesh M (2015) Effect of seaweed liquid extracts and plant growth regulators on in vitro mass propagation of brinjal (Solanum melongena L.) through hypocotyl and leaf disc explants. J Appl Phycol 27:993–1002

    Article  CAS  Google Scholar 

  • Satish L, Rathinapriya P, Rency AS, Ceasar SA, Pandian S, Rameshkumar R, Ramesh M (2016) Somatic embryogenesis and regeneration using Gracilaria edulis and Padina boergesenii seaweed liquid extracts and genetic fidelity in finger millet (Eleusine coracana). J Appl Phycol 28:2083–2098

    Article  Google Scholar 

  • Shinoyama H, Nomura Y, Tsuchiya T, Kazuma T (2004) A simple and efficient method for somatic embryogenesis and plant regeneration from leaves of Chrysanthemum (Dendranthema grandiflora (Ramat.) Kitamura). Plant. Biotech 21:25–30

    CAS  Google Scholar 

  • Sivakumar G (2013) Colchicine semisynthetics: chemotherapeutics for cancer? Curr Med Chem 20:892–898

    CAS  PubMed  Google Scholar 

  • Thuzar M, Vanavichit A, Tragoonrung S, Jantasuriyarat C (2011) Efficient and rapid plant regeneration of oil palm zygotic embryos cv. ‘Tenera’ through somatic embryogenesis. Acta Physiol Plant 33:123–128

    Article  Google Scholar 

  • Vales T, Feng X, Ge L, Xu N, Cairney J, Pullman GS et al (2007) Improved somatic embryo maturation in loblolly pine by monitoring ABA-responsive gene expression. Plant Cell Rep 26:133–143

    Article  CAS  PubMed  Google Scholar 

  • Venkatachalam P, Malar S, Thiyagarajan M, Indiraarulselvi P, Geetha N (2017) Effect of phycochemical coated silver nanocomplexes as novel growth-stimulating compounds for plant regeneration of Alternanthera sessilis L. J Appl Phycol 29:1095–1106

    Article  CAS  Google Scholar 

  • Verma SK, Dasb AK, Cingoza GS, Uslua E, Gurela E (2016) Influence of nutrient media on callus induction, somatic embryogenesis and plant regeneration in selected Turkish crocus species. Biotechnol Rep 10:66–74

    Article  Google Scholar 

  • Vinoth S, Gurusaravanan P, Jayabalan N (2012) Effect of seaweed extracts and plant growth regulators on high-frequency in vitro mass propagation of Lycopersicon esculentum L (tomato) through double cotyledonary nodal explants. J Appl Phycol 24:1329–1337

    Article  CAS  Google Scholar 

  • Vinoth S, Gurusaravanan P, Jayabalan N (2014) Optimization of somatic embryogenesis protocol in Lycopersicon esculentum L. using plant growth regulators and seaweed extracts. J Appl Phycol 26:1527–1537

    Article  CAS  Google Scholar 

  • Washington WS, Engleitner S, Boontjes G, Shanmuganathan N (1999) Effect of fungicides, seaweed extracts, tea tree oil and fungal agents on fruit rot and yield in strawberry. Aust J Exp Agric 39:487–494

    Article  CAS  Google Scholar 

  • Yan SF, Zhang Q, Wang JE, Sun YQ, Daud MK, Zhu SJ (2010) Somatic embryogenesis and plant regeneration in two wild cotton species belong to G genome. In: In Vitro Cell Dev Biol-Plant, vol 46, pp 298–305

    Google Scholar 

  • You CR, Fan TJ, Gong XQ, Bian FH, Liang LK, FN Q (2011) A high-frequency cyclic secondary somatic embryogenesis system for Cyclamen persicum Mill. Plant Cell Tissue Organ Cult 105:317–328

    Article  Google Scholar 

  • Zibbu G, Batra A (2010) Effect of adenine sulphate on organogenesis via leaf culture in an ornamental plant: Thevetia peruviana (Pers.) Schum. Int J Pharma Bio Sci 1:1–9

    Google Scholar 

Download references

Funding

Dr. P. Venkatachalam gratefully acknowledges the Council of Scientific and Industrial Research (CSIR), New Delhi, for providing the financial assistance under the CSIR Major Research Project No. 38(1324)/12 EMR-II.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Venkatachalam.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahendran, D., Kavi Kishor, P.B., Geetha, N. et al. Phycomolecule-coated silver nanoparticles and seaweed extracts induced high-frequency somatic embryogenesis and plant regeneration from Gloriosa superba L.. J Appl Phycol 30, 1425–1436 (2018). https://doi.org/10.1007/s10811-017-1293-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-017-1293-1

Keywords

Navigation