Skip to main content
Log in

Somatic embryogenesis from in vitro anther culture of apomictic buffel grass genotypes and analysis of regenerated plants using flow cytometry

  • Original Paper
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

Buffel grass is a fodder grass that reproduces mainly via apomixis. Using in vitro tissue culture in apomictic species provides alternatives that can be applied in a breeding program. The aims of this work were to establish a protocol for in vitro generation of apomictic buffel grass genotypes using anthers as explants and to evaluate the genetic stability of regenerated plants via flow cytometry (FCM). Three genotypes were able to induce embryogenic calli in Murashige and Skoog (MS) medium supplemented with 6 mg/l of 2,4-dichlorophenoxyacetic acid. Seedling regeneration occurred in a MS medium supplemented with 0.5 mg/l napthaleneacetic acid + 1 mg/l 6-benzylaminopurin. Seedlings were derived from somatic embryos and the morphogenic process was induced using the somatic tissue of the stamens. Induction and regeneration efficiency depended on the genotype and was affected by date of tiller collection, different pretreatments or the interaction of these variables. FCM analyses in in vitro regenerated plants showed genetic instability in their nuclear DNA content. Plants with lower nuclear DNA content may indicate DNA aneuploids (8.6 %), whereas plants that had twice the value of nuclear DNA content (4.7 %) suggest in vitro polyploidization. This variation observed in apomictic genotypes provides an opportunity to obtain new variants, which may then be included as sources of genetic variability in buffel grass breeding programs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

FCM:

Flow cytometry

2,4-D:

2,4-Dichlorophenoxyacetic acid

NAA:

Napthaleneacetic acid

BAP:

6-Benzylaminopurin

MS:

Murashige and Skoog (1962) medium

BAC:

Beginning of anther culture

PEC:

Proportion of embryogenic calli

NRS:

Number of regenerated seedlings

References

  • Barow M, Jovtchev G (2007) Endopolyploidy in plants and its analysis by flow cytometry. In: Dolezel J, Greilhuber J, Suda J (eds) Flow cytometry with plant cells. Wiley, Weinheim, pp 349–372

    Chapter  Google Scholar 

  • Benkirane H, Sabounji K, Chlyah A, Chlyah H (2000) Somatic embryogenesis and plant regeneration from fragments of immature inflorescences and coleoptiles of durum wheat. Plant Cell Tissue Organ Cult 61:107–113

    Article  Google Scholar 

  • Bhat V, Dalton SJ, Kumar S, Bhat BV, Gupta MG, Morris P (2001) Particle-inflow-gun-mediated genetic transformation of buffel grass (Cenchrus ciliaris L.): optimizing biological and physical parameters. J Appl Genet 42:405–412

    CAS  PubMed  Google Scholar 

  • Burson BL, Actkinson JM, Hussey MA, Jessup RW (2012) Ploidy determination of buffel grass accessions in the USDA National Plant Germplasm System collection by flow cytometry. S Afr J Bot 79:91–95

    Article  Google Scholar 

  • Chen LJ, Zhu XY, Gu L, Wu J (2005) Efficient callus induction and plant regeneration from anther of Chinese narcissus (Narcissus tazetta L. var. chinensis Roem). Plant Cell Rep 24:401–407

    Article  CAS  PubMed  Google Scholar 

  • Cistué L, Ramos A, Castillo AM (1999) Influence of anther pretreatment and culture medium composition on the production of barley doubled haploids from model and low responding cultivars. Plant Cell Tissue Organ Cult 55:159–166

    Article  Google Scholar 

  • Clarindo WR, de Carvalho CR, Araújo FS, de Abreu IS, Otoni WC (2008) Recovering polyploid papaya in vitro regenerants as screened by flow cytometry. Plant Cell Tissue Organ Cult 92:207–214

    Article  Google Scholar 

  • Colomba EL, Grunberg K, Griffa S, Ribotta A, Mroginski L, Biderbost E (2006) The effect of genotype and culture medium on somatic embryogenesis and plant regeneration from mature embryos of fourteen apomictic cultivars of buffel grass (Cenchrus ciliaris L.). Grass Forage Sci 61:2–8

    Article  Google Scholar 

  • Currais L, Loureiro J, Santos C, Canhoto JM (2013) Ploidy stability in embryogenic cultures and regenerated plantlets of tamarillo. Plant Cell Tissue Organ Cult 114:149–159

    Article  Google Scholar 

  • D’Ambrogio de Argüeso A (1986) Manual de Técnicas en Histología Vegetal. Hemisferio Sur S.A, Buenos Aires

    Google Scholar 

  • Di Rienzo JA, Guzmán AW, Casanoves F (2002) A multiple comparisons method based on the distribution of the root node distance of a binary tree. J Agric Biol Environ Stat 7:1–14

    Article  Google Scholar 

  • Di Rienzo JA, Casanoves F Balzarini MG, Gonzalez L, Tablada M, Robledo CW (2012) InfoStat. Grupo InfoStat, FCA, Universidad Nacional de Córdoba, Argentina. http://www.infostat.com.ar

  • Doležel J, Greilhuber J, Suda J (2007) Estimation of nuclear DNA content in plants using flow cytometry. Nat Protoc 2:2233–2244

    Article  PubMed  Google Scholar 

  • Dunwell JM (1976) A comparative study of environmental and developmental factors which influence embryo induction and growth in cultured anthers of Nicotiana Tabacum. Environ Exp Bot 16:109–118

    Article  Google Scholar 

  • Endemann M, Hristoforoglu K, Stauber T, Wilhelm E (2001) Assessment of age-related polyploidy in Quercus robur L. somatic embryos and regenerated plants using DNA flow cytometry. Biol Plant 44:339–345

    Article  Google Scholar 

  • Ercan N, Sensoy AF, Sensoy AS (2006) Influence of growing season and donor plant age on anther culture response of some pepper cultivars (Capsicum annuum L.). Sci Hortic 110:16–20

    Article  Google Scholar 

  • Faure O, Aarrouf J, Nougarède A (1996) Ontogenesis, differentiation and precocious germination in anther-derived somatic embryos of grapevine (Vitis vinifera L.): proembryogenesis. Ann Bot 78:23–28

    Article  Google Scholar 

  • Fisher WD, Bashaw EC, Holt EC (1954) Evidence of apomixis in Pennisetum ciliare and Cenchrus setigerus. Agron J 46:401–404

    Article  Google Scholar 

  • Hanna WW, Bashaw EC (1987) Apomixis: its identification and use in plant breeding. Crop Sci 27:1136–1139

    Article  Google Scholar 

  • Hanselka CW, Hussey MA, Ibarra F (2004) Buffelgrass. In: Moser LE, Burson BL, Sollenberger LE (eds) Warm-season (C4) grasses. Madison, Wisconsin, pp 477–502

    Google Scholar 

  • Jain SM (2001) Tissue culture-derived variation in crop improvement. Euphytica 118:153–166

    Article  CAS  Google Scholar 

  • Jessup RW, Burson BL, Burow O, Wang YW, Chang C, Li Z, Paterson AH, Hussey MA (2003) Segmental allotetraploidy and allelic interactions in buffelgrass (Pennisetum ciliare (L.) Link syn. Cenchrus ciliaris L.) as revealed by genome mapping. Genome 46:304–313

    Article  CAS  PubMed  Google Scholar 

  • Jha P, Yadav CB, Anjaiah V, Bhat V (2009) In vitro plant regeneration through somatic embryogenesis and direct shoot organogenesis in Pennisetum glaucum (L.) R. Br. In Vitro Cell Dev Biol Plant 45:145–154

    Article  Google Scholar 

  • Jin S, Mushke R, Zhu H, Tu L, Lin Z, Zhang Y, Zhang X (2008) Detection of somaclonal variation of cotton (Gossypium hirsutum) using cytogenetics, flow cytometry and molecular markers. Plant Cell Rep 27(8):1303–1316

    Article  CAS  PubMed  Google Scholar 

  • Kackar A, Shekhawat NS (1991) Plant regeneration from cultured immature inflorescences of Cenchrus setigerus and Cenchrus ciliaris. Indian J Exp Biol 29:62–64

    Google Scholar 

  • Kharrat-Souissi A, Siljak-Yakovlev S, Brown SC, Chaieb M (2012) Cytogeography of Cenchrus ciliaris (Poaceae) in Tunisia. Folia Geobot 48:95–113

    Article  Google Scholar 

  • Kruczkowska H, Pawlowska H, Skuciñska B (2002) Influence of anther pretreatment on the efficiency of androgenesis in barley. J Appl Genet 43:287–296

    PubMed  Google Scholar 

  • Kubaláková M, Doležel J, Lebeda A (1996) Ploidy instability of embryogenic cucumber (Cucumis sativus L.) callus culture. Biol Plant 38:475–480

    Article  Google Scholar 

  • Kumar S, Bhat V (2012) High-frequency direct plant regeneration via multiple shoot induction in the apomictic forage grass Cenchrus ciliaris L. In Vitro Cell Dev Biol Plant 48:241–248

    Article  Google Scholar 

  • Labbani Z, Buyser J, Picard E (2007) Effect of mannitol pretreatment to improve green plant regeneration on isolated microspore culture in Triticum turgidum ssp. durum cv. ‘Jennah Khetifa’. Plant Breeding 126:565–568

    Article  CAS  Google Scholar 

  • Lambé P, Mutambel HSN, Deltour R, Dinant M (1999) Somatic embryogenesis in pearl millet (Pennisetum glaucum): strategies to reduce genotype limitation and to maintain long–term totipotency. Plant Cell Tissue Organ Cult 55:23–29

    Article  Google Scholar 

  • Larkin PJ, Scowcroft SC (1981) Somaclonal variation—a novel source of variability from cell culture for plant improvement. Theor Appl Genet 60:197–214

    Article  CAS  PubMed  Google Scholar 

  • Leal F, Loureiro J, Rodriguez E, Pais MS, Santos C, Pinto-Carnide O (2006) Nuclear DNA content of Vitis vinifera cultivars and ploidy level analyses of somatic embryo-derived plants obtained from anther culture. Plant Cell Rep 25:978–985

    Article  CAS  PubMed  Google Scholar 

  • Lim WL, Loh CS (2003) Endopolyploidy in Vanda Miss Joaquim (Orchidaceae). New Phytol 159:279–287

    Article  CAS  Google Scholar 

  • López-Pérez AJ, Carreño J, Martínez-Cutillas A, Dabauza M (2005) High embryogenic ability and plant regeneration of table grapevine cultivars (Vitis vinifera L.) induced by activated charcoal. Vitis 44:79–85

    Google Scholar 

  • Lysák MA, Doležel J (1998) Estimation of nuclear DNA content in Sesleria (Poacea). Caryologia 52:123–132

    Article  Google Scholar 

  • Marie D, Brown S (1993) A cytometric exercise in plant DNA histograms, with 2C values for 70 species. Biol Cell 78:41–51

    Article  CAS  PubMed  Google Scholar 

  • May RA, Sink KC (1995) Genotype and auxin influence direct somatic embryogenesis from protoplasts derived from embryogenic cell suspensions of Asparagus officinalis L. Plant Sci 108:71–84

    Article  CAS  Google Scholar 

  • Mishiba K, Tawada K, Mii M (2006) Ploidy distribution in the explant tissue and the calluses induced during the initial stage of internode segment culture of Asparagus officinalis L. In Vitro Cell Dev Biol Plant 42:83–88

    Article  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Murty UR, Bharathi M, Visadara M, Annapurna A (1992) Embryogenic callus formation and plant regeneration in Cenchrus ciliaris (L.). Cereal Res Commun 20:7–12

    Google Scholar 

  • Niimi Y, Dong-Sheng H, Makoto F (2001) Production of virus-free plantlets by anther culture of Lilium × ‘Enchantment’. Sci Hort 90:325–334

    Article  CAS  Google Scholar 

  • Otto F (1990) DAPI staining of fixed cells for high-resolution flow cytometry of nuclear DNA. In: Crissman HA, Darzynkiewicz Z (eds) Methods in cell biology, vol 33. Academic Press Inc., New York, pp 105–110

    Google Scholar 

  • Parra-Vega V, Renau-Morata B, Sifres A, Seguí-Simarro JM (2012) Stress treatments and in vitro culture conditions influence microspore embryogenesis and growth of callus from anther walls of sweet pepper (Capsicum annuum L.). Plant Cell Tissue Organ Cult 112:353–360

    Article  Google Scholar 

  • Perrin M, Gertz C, Masson JE (2004) High efficiency initiation of regenerable embryogenic callus from anther filaments of 19-grapevine genotypes grown worldwide. Plant Sci 167:1343–1349

    Article  CAS  Google Scholar 

  • Pfosser M, Amon A, Lelley T, Heberle-Bors E (1995) Evaluation of sensitivity of flow cytometry in detecting aneuploidy in wheat–rye addition lines. Cytometry 21:387–393

    Article  CAS  PubMed  Google Scholar 

  • Prado MJ, Rodriguez E, Rey L, González MV, Santos C, Rey M (2010) Detection of somaclonal variants in somatic embryogenesis regenerated plants of Vitis vinifera by flow cytometry and microsatellite markers. Plant Cell Tissue Organ Cult 103:49–59

    Article  Google Scholar 

  • Rodrigues LR, Oliveira JMS, Mariath JEA, Bodanese-Zanettini ME (2005) Histology of embryogenic responses in soybean anther culture. Plant Cell Tissue Organ Cult 80:129–137

    Article  Google Scholar 

  • Ross AH, Manners JM, Birch RG (1995) Embryonic callus production, plant regeneration, and transient gene expression following particle bombardment, in the pasture groiss Cenchrus ciliaris (Gramineae). Aust J Bot 43:193–199

    Article  Google Scholar 

  • Roux N, Toloza A, Radecki Z et al (2003) Rapid detection of aneuploidy using flow cytometry. Plant Cell Rep 21:483–490

    CAS  PubMed  Google Scholar 

  • Salas P, Prohens J, Seguí-Simarro JM (2011) Evaluation of androgenic competence through anther culture in common eggplant and related species. Euphytica 182:261–274

    Article  CAS  Google Scholar 

  • Snyder LA, Hernandez AR, Warmke HE (1955) The mechanism of apomixis in Pennisetum ciliare. Bot Gaz 116:209–221

    Article  Google Scholar 

  • Takahata Y, Brown DCW, Keller WA (1991) Effect of donor plant age and infloescense age on microspore culture of Brassica napus L. Euphytica 58:51–55

    Article  Google Scholar 

  • Tremblay L, Levasseur C, Tremblay FM (1999) Frequency of somaclonal variation in plants of black spruce (Picea mariana, Pinaceae) and white spruce (P. glauca, Pinaceae) derived from somatic embryogenesis and identification of some factors involved in genetic instability. Am J Bot 86:1373–1381

    Article  CAS  PubMed  Google Scholar 

  • Vikrant A, Rashid A (2002) Somatic embryogenesis from immature and mature embryos of a minor millet Paspalum scrobiculatum L. Plant Cell Tissue Organ Cult 69:71–77

    Article  CAS  Google Scholar 

  • Winarto B, Rachmawati F, Pramanik D, Teixeira da Silva JA (2011) Morphological and cytological diversity of regenerants derived from half-anther cultures of anthurium. Plant Cell Tissue Organ Cult 105:363–374

    Article  Google Scholar 

  • Yadav CB, Jha P, Mahalakshmi C, Anjaiah V, Bhat V (2009) Somatic embryogenesis and regeneration of Cenchrus ciliaris genotypes from immature inflorescence explants. Biol Plant 53:603–609

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Jaroslav Dolezel for providing the plant DNA standards used in this work. We thank P. Crespo and P. Abadie for assistance with the FCM analysis and I. Teich for assistance with statistical analyses. This research was supported by the projects INTA-AEFP-PE No. 261821 and CONICET (PIP 112 201101 0031).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edgardo Carloni.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carloni, E., Ribotta, A., López Colomba, E. et al. Somatic embryogenesis from in vitro anther culture of apomictic buffel grass genotypes and analysis of regenerated plants using flow cytometry. Plant Cell Tiss Organ Cult 117, 311–322 (2014). https://doi.org/10.1007/s11240-014-0441-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-014-0441-4

Keywords

Navigation