Skip to main content
Log in

GA3 stimulates the formation and germination of somatic embryos and the expression of a KNOTTED-like homeobox gene of Cocos nucifera (L.)

  • Original Paper
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

The micropropagation of coconut palm has progressed rapidly; yet, there are constraints with regard to the number of somatic embryos formed and their germination. To overcome these, we tested the effect of gibberellic acid and characterized genes of the KNOX family. Gibberellic acid at 0.5 μM increased 1.5-fold the number of calli forming somatic embryos and twofold the number of somatic embryos per callus, calli with germinating embryos and the number of germinating somatic embryos per callus. With regard to the study of KNOX family genes, the complete sequences of two KNOX-like genes were obtained for CnKNOX1 and CnKNOX2. The deduced amino acid sequence of both showed highly conserved domains characteristic of KNOX genes. CnKNOX1 showed high homology with KNOX class I proteins. CnKNOX1 expression was detected throughout the embryogenesis process except in somatic embryos at the pro-globular stage, and was highest in somatic embryos at the coleoptilar stage. No detection of CnKNOX1 expression occurred in calli with aberrant embryos. The addition of gibberellic acid stimulated the expression of CnKNOX1 earlier and the relative expression at all stages was higher. CnKNOX2 expression occurred at all stages peaking at the globular stage, but gibberellic acid treatment decreased the expression. Gene expression was also analyzed in tissues of different organs of adult palms. With CnKNOX1, high level of expression was found in tissues of organs with, but not in those without, meristem, whereas CnKNOX2 expression was detected in tissues with and also in those without meristem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Altschul SF, Stephen F, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    CAS  PubMed  Google Scholar 

  • Azpeitia A, Chan JL, Sáenz L, Oropeza C (2003) Effect of 22(S), 23(S)-homobrassinolide on somatic embryogenesis in plumule explants of Cocos nucifera (L.) cultured in vitro. J Hortic Sci Biotechnol 78(5):591–596

    CAS  Google Scholar 

  • Belmonte MF, Tahir M, Schroeder D, Stasolla C (2007) Overexpression of HBK3, a class I KNOX homeobox gene, improves the development of Norway spruce (Picea abies) somatic embryos. J Exp Bot 58(11):2851–2861

    Article  CAS  PubMed  Google Scholar 

  • Chan JL, Sáenz L, Talavera C, Hornung R, l Robert M, Oropeza C (1998) Regeneration of coconut (Cocos nucifera L.) from plumule explants through somatic embryogenesis. Plant Cell Rep 17:515–521

    Article  CAS  Google Scholar 

  • Chang RL, Gago GM, Palena CM, Gonzalez DH (1998) Homeoboxes in plant development. Biochim Biophys Acta 1442:1–19

    Google Scholar 

  • Das AB, Rout GR, Das P (1995) In vitro somatic embryogenesis from callus culture of the timber yielding tree Hardwickia binata Roxb. Plant Cell Rep 15:147–149

    Article  CAS  Google Scholar 

  • Eeuwens CJ (1976) Mineral requirements for growth and callus initiation of tissue explants excised from mature coconut palms (Cocos nucifera L.) and cultured in vitro. Physiol Plant 36:23–28

    Article  CAS  Google Scholar 

  • Fujimura T, Komamine A (1975) Effects of various growth regulators on the embryogenesis in carrot cell suspension culture. Plant Sci Lett 5:359–369

    Article  CAS  Google Scholar 

  • Gehring WJ (1987) Homeoboxes in the study of development. Science 236:1245–1252

    Article  CAS  PubMed  Google Scholar 

  • George FE (1993) Plant growth regulators. In: George FE (ed) Plant propagation by tissue culture (part 1). The Technology. Exegetics Ltd, Edington, pp 420–479

    Google Scholar 

  • Hake S, Smith HMS, Holtan H, Magnani E, Mele G, Ramirez J (2004) The role of KNOX genes in plant development. Annu Rev Cell Dev Biol 20:125–151

    Article  CAS  PubMed  Google Scholar 

  • Hamant O, Nogue F, Belles-Boix E, Jublot D, Grandjean O, Traas J, Pautot V (2002) The KNAT2 homeodomain protein interacts with ethylene and cytokinin signaling. Plant Physiol 130:657–665

    Google Scholar 

  • Hartmann HT, Kester DE, Davies FT, Geneve RL (1997) Plant propagation principles and practices, 6th edn. Prentice Hall, New Jersey, pp 125–146

    Google Scholar 

  • Hay A, Kaur H, Phillips A, Hedden P, Hake S, Tsiantis M (2002) The gibberellins pathway mediates knotted1-type homeobox function in plants with different body plants. Curr Biol 12:1557–1565

    Article  CAS  PubMed  Google Scholar 

  • Hita O, Lafarga C, Guerra H (1997) Somatic embryogenesis from chickpea (Cicer arietium L.) immature cotyledons: The effect of zeatin, gibberellic acid and indole-3-butyric acid. Acta Physiol Plant 19:333–338

    Article  CAS  Google Scholar 

  • Hjortswang HI, Filonova LH, Vahala T, von Arnold S (2002) Modified expression of the Pa18 gene interferes with somatic embryo development in Norway spruce. Plant Growth Regul 38:75–82

    Article  CAS  Google Scholar 

  • Hornung R (1995) Micropropagation of Cocos nucifera L. from plumule tissue excised from mature zygotic embryo. Plantations Res Dev 2:38–41

    Google Scholar 

  • Hutchinson MJ, KrishnaRaj S, Saxena PK (1997) Inhibitory effect of GA3 on the development of thidiazuron-induced somatic embryogenesis in geranium (Pelargonium x hortorum Bailey) hypocotyl cultures. Plant Cell Rep 16:435–438

    CAS  Google Scholar 

  • Ito M, Sato Y, Matsuoka M (2002) Involvement of homeobox genes in early body plan of monocot. Int Rev Cytol 218:1–35

    Article  CAS  PubMed  Google Scholar 

  • Jouannic S, Collin M, Vidal B, Verdeil JL, Tregear W (2007) A class I KNOX gene from the palm species Elaeis guineensis (Arecaceae) is associated with meristem function and a distinct mode of leaf dissection. New Phytol 174:551–568

    Article  CAS  PubMed  Google Scholar 

  • Kerstetter R, Vollbrecht E, Lowe B, Veit B, Yamaguchi J, Hake S (1994) Sequence analysis and expression patterns divide the maize knotted-like homeobox genes into two classes. Plant Cell 6:1877–1887

    Article  CAS  PubMed  Google Scholar 

  • Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) ClustalW and Clustal X version 2. Bioinformatics 23:2947–2948

    Article  CAS  PubMed  Google Scholar 

  • Lincoln C, Long J, Yamaguchi J, Serikawa K, Hake S (1994) A Knotted-like homeobox gene in Arabidopsis is expressed in the vegetative meristem and dramatically alters leaf morphology when overexpressed in transgenic plants. Plant Cell 6:1859–1876

    Article  CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C (T)) Method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Long JA, Moan EI, Medford JI, Barton MK (1996) A member of the KNOTTED class of homeodomain proteins encoded by the SHOOTMERISTEMLESS gene of Arabidopsis. Nature 379:66–69

    Article  CAS  PubMed  Google Scholar 

  • Ma H, McMullen MD, Finer JJ (1994) Identification of a homeobox-containing gene with enhanced expression during soybean (Glycine max L.) somatic embryo development. Plant Mol Biol 24:465–473

    Article  CAS  PubMed  Google Scholar 

  • Matsuoka M, Ichikawa H, Saito A, Tamda Y, Fujimura T, Kano-Murakami Y (1993) Expression of a rice homeobox gene causes altered morphology of transgenic plants. Plant Cell 5:1039–1048

    Article  CAS  PubMed  Google Scholar 

  • Mordhorst AP, Voerman KJ, Hartog MV, Meijer EA, Van Wen J, Koornneef M, De Vries SC (1998) Somatic embryogenesis in Arabidopsis thaliana is facilitated by mutations in genes repressing meristematic cell divisions. Genetics 149:549–563

    CAS  PubMed  Google Scholar 

  • Pérez-Nuñez M, Chan JL, Sáenz L, González T, Verdeil JL, Oropeza C (2006) Improved somatic embryogenesis from Cocos nucifera (L.) plumule explants. In Vitro Cell Dev Biol Plant 42:37–43

    Article  Google Scholar 

  • Pérez-Nuñez M, Souza R, Sáenz L, Chan J, Zúñiga-Aguilar J, Oropeza C (2009) Detection of a SERK-like gene in coconut and analysis of its expression during the formation of embryogenic callus and somatic embryos. Plant Cell Rep 28:11–19

    Article  PubMed  Google Scholar 

  • Rudus I, Kepczynska E, Kepczynski J (2000) Regulation of Mendicago sativa L. somatic embryogenesis by gibberellins. Plant Growth Regul 36:01–95

    Google Scholar 

  • Sáenz L, Azpeitia A, Chuc-Armendariz B, Chan JL, Verdeil JL, Hocher V, Oropeza C (2006) Morphological and histological changes during somatic embryo formation from coconut plumule explant. In Vitro Cell Dev Biology 42:19–25

    Article  Google Scholar 

  • Sakamoto T, Kamiya N, Ueguchi-Tanaka M, Iwahori S, Matsuoka M (2001) KNOX homeodomain protein directly suppresses the expression of a gibberellin biosynthetic gene in the tobacco shoot apical meristem. Genes Dev 15:581–590

    Article  CAS  PubMed  Google Scholar 

  • Sakamoto T, Sakakibara H, Kojima M, Yamamoto Y, Nagasaki H, Inukai Y, Sato Y, Matsuoka M (2006) Ectopic expression of KNOTTED1-like homebox protein induces expression of cytokinin biosynthesis genes in rice. Plant Physiol 142:54–62

    Article  CAS  PubMed  Google Scholar 

  • Sano R, Juarez CM, Hass B, Sakakibara K, Ito M, Banks JA, Hasebe M (2005) KNOX homeobox genes potentially have similar function in both diploid unicellular and multicellular meristems, but not in haploid meristems. Evol Dev 7:69–78

    Article  CAS  PubMed  Google Scholar 

  • Serikawa KA, Martinez-Laborda A, Kim H-S, Zambryski PC (1997) Localization of expression of KNAT3, a class 2 knotted1-like gene. Plant J 11:853–861

    Article  CAS  PubMed  Google Scholar 

  • Shimizu K, Nagaike H, Yabuya T, Adachi T (1997) Plant regeneration from suspension culture of Iris germanica. Plant Cell Tiss Org Cult 50:27–31

    Article  Google Scholar 

  • Sundas-Larsson A, Svenson M, Liao H, Engström P (1998) A homeobox gene with potential developmental control function in the meristems of the conifer Picea abies. PNAS 95:15118–15122

    Article  CAS  PubMed  Google Scholar 

  • Tanaka-Ueguchi M, Itoh H, Oyama N, Koshioka M, Matsuoka M (1998) Over-expression of a tobacco homeobox gene, NTH15, decreases the expression of a gibberellins biosynthetic gene encoding GA 20-oxidase. Plant J 15:391–400

    Article  CAS  PubMed  Google Scholar 

  • Thomas TD (2006) Effect of sugars, gibberellic acid and abscisic acid somatic embryogenesis in Tylophora indica (Burm F.) Merrill. Chin J Biotechnol 22:465–471

    Article  Google Scholar 

  • Tisserat B, Murashinge T (1977) Repression of asexual embryogenesis in vitro by some plant growth regulators. In Vitro 13:799–805

    Google Scholar 

  • Volbrecht E, Veit B, Sinha N, Hake S (1991) The developmental gene knotted-1 is a member of a maize homeobox gene family. Nature 350:241–243

    Article  Google Scholar 

  • Xu Z-Q, Jia J-F, Hu Z-D (1997) Somatic embryogenesis in Sesamum indicum L. cv. Nigrum. J Plant Physiol 150:755–758

    CAS  Google Scholar 

  • Yang DC, Choi YE (2000) Production of transgenic plants via Agrobacterium rhizogenes-mediated transformation of Panax ginseng. Plant Cell Rep 19:491–496

    Article  CAS  Google Scholar 

  • Zhang S, Wong L, Meng L, Lemaux PG (2002) Similarity of expression patterns of knotted1 and ZmLEC1 during somatic and zygotic embryogenesis in maize (Zea mays L.). Planta 215:191–194

    Article  CAS  PubMed  Google Scholar 

  • Zimmerman JL (1993) Somatic embryogenesis: a model for early development in higher plants. Plant Cell 5:1411–1423

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

M. I. Montero was the recipient of a fellowship of CONACyT (183253). L. Sáenz received a postdoctoral fellowship of the University Montpellier II. We thank the continuous support of Centro de Investigación Científica de Yucatán and especially J.L. Chan for technical support for in vitro culture of tissues. Part of this work was funded by CONACYT (P3834-Z).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis Sáenz.

Additional information

Communicated by W. Harwood.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Montero-Córtes, M., Sáenz, L., Córdova, I. et al. GA3 stimulates the formation and germination of somatic embryos and the expression of a KNOTTED-like homeobox gene of Cocos nucifera (L.). Plant Cell Rep 29, 1049–1059 (2010). https://doi.org/10.1007/s00299-010-0890-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-010-0890-0

Keywords

Navigation