Skip to main content

Advertisement

Log in

Effect of liquid seaweed extracts on growth of tomato seedlings (Solanum lycopersicum L.)

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

Seaweed extracts are used as nutrient supplements, biostimulants, or biofertilizers in agriculture and horticulture to increase plant growth and yield. In this study, we examined the effect of liquid seaweed extracts (LSEs) made from Ulva lactuca, Caulerpa sertularioides, Padina gymnospora, and Sargassum liebmannii as biostimulants on the germination and growth of tomato (Solanum lycopersicum) under laboratory and greenhouse conditions using foliar and soil drench applications of LSEs. We assessed LSEs at different concentrations (0.2, 0.4, and 1.0 %) on germination parameters (percentage, index, mean time, energy, and seedling vigor index) and growth parameters (plumule length, radical length, shoot length, root length, fresh weight, and dry weight) of tomato seedlings. Our results indicate that seeds treated with LSEs of U. lactuca and P. gymnospora at lower concentrations (0.2 %) showed enhanced germination (better response in germination rate associated with lower mean germination time, high germination index and germination energy, and consequently greater seedling vigor and greater plumule and radicle length). Application as a soil drench was found to be more effective in influencing the height of the plant (up to 79 cm) than the foliar spray application (75 cm). Plants receiving LSEs of U. lactuca and P. gymnospora showed increased shoot length, root length, and weight. Furthermore, U. lactuca and P. gymnospora were found to be more successful and better candidates for developing effective biostimulants to improve the growth of tomato plants. This study provides important information on the identification and utilization of Mexican seaweed resources for agriculture and is the first study to report on the uses of these seaweeds as a source of liquid extracts as biostimulants in agriculture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Akula AC, Bateson M (2000) Betaine: a novel candidate for rapid induction of somatic embryogenesis in tea (Camellia sinensis [L.] O. Kuntze). Plant Growth Regul 30:241–246

    Article  CAS  Google Scholar 

  • Al-Harbi AR, Wahb-Allah MA, Abu-Muriefah SS (2008) Salinity and nitrogen level affects germination, emergence, and seedling growth of tomato. Int J Veget Sci 14:380–392

    Article  Google Scholar 

  • Almodares AM, Hadi R, Dosti B (2007) Effects of salt stress on germination percentage and seedling growth in sweet sorghum cultivars. J Biol Sci 7:1492–1495

    Article  Google Scholar 

  • AOAC (Association of Official Analytical Chemists) (1990) Official methods of analysis, AOAC 15th edn. (P) method 965.01, Washington, DC, p 12

  • AOSA (Association of Official Seed Analysts) (1983) Seed vigor testing handbook. Contribution no. 32. Association of Official Seed Analysts, Lincoln, p 89

    Google Scholar 

  • AOSA (Association of Official Seed Analysts) (2005) In: Rules for testing seed. (Capashew ed), Las Cruces, pp 4–113

  • Arnon DI, Johnson CM (1942) Influence of hydrogen ion concentration on the growth of in higher plants under controlled conditions. Plant Physiol 17:525–539

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Ashok-Kumar N, Vanlalzarzova B, Sridhar S, Baluswami M (2012) Effect of liquid seaweed fertilizer of Sargassum wightii Grev. on the growth and biochemical content of green gram (Vigna radiata (L.) R. Wilczek). Rec Res Sci Tech 4:40–45

    Google Scholar 

  • Basher AA, Mohammed AJ, Teeb AIH (2012) Effect of seaweed and drainage water on germination and seedling growth of tomato (Lycopersicon spp.). Euphrates J Ag Sci 4:24–39

    Google Scholar 

  • Blunden G (1991) Agricultural uses of seaweeds and seaweed extracts. In: Guiry MD, Blunden G (eds) Seaweed resources in Europe: uses and potential. Wiley, Chichester, pp 65–81

    Google Scholar 

  • Blunden G, Gordon SM (1986) Betaines and their sulphono analogues in marine algae. In: Round FE, Chapman DJ (eds) Progress in phycological research, vol 4. Biopress Ltd., Bristol, pp 39–80

    Google Scholar 

  • Blunden G, Cripps AL, Gordon SM, Mason TG, Turner CH (1986) The characterisation and quantitative estimation of betaines in commercial seaweed extracts. Bot Mar 29:155–160

    Article  CAS  Google Scholar 

  • Blunden G, Jenkins T, Liu Y (1997) Enhanced leaf chlorophyll levels in plants treated with seaweed extract. J Appl Phycol 8:535–543

    Article  Google Scholar 

  • Booth E (1969) The manufacture and properties of liquid seaweed extracts. In: Blunden G (ed) Proceedings of the sixth international seaweed symposium, Tokyo, pp 655–662

  • Canales-López B (2000) Seaweed-enzymes: possibilities for stimulating crop yield and improving soil quality. Terra 17:271–276

    Google Scholar 

  • Carrillo-Domínguez S, Casas-Valdez M, Ramos F, Pérez-Gil F, Sánchez-Rodríguez I (2002) Algas marinas de Baja California Sur, México: valor nutrimental y perspectivas de aprovechamiento en la alimentación animal. Arch Latinoam Nutr 52:115–125

    Google Scholar 

  • Castro-González MI, Pérez-Gil R, Pérez-Estrella S, Carrillo-Domínguez S (1996) Chemical composition of the green alga Ulva lactuca. Cienc Mar 22:205–213

    Google Scholar 

  • Challen SB, Hemingway JC (1965) Growth of higher plants in response to feeding with seaweed extracts. In: Proceedings of the 5th International Seaweed Symposium, pp 359–367

  • Crouch IJ, van Staden J (1992) Effect of seaweed concentrate on the establishment and yield of greenhouse tomato plants. J Appl Phycol 4:291–296

    Article  Google Scholar 

  • Crouch IJ, van Staden J (1993) Evidence for the presence of plant growth regulators in commercial seaweed products. Plant Growth Regul 13:21–29

    CAS  Google Scholar 

  • Crouch IJ, Beckett RP, van Staden J (1990) Effect of seaweed concentrate on the growth and mineral nutrition of nutrient-stressed lettuce. J Appl Phycol 2:269–272

    Article  Google Scholar 

  • Demir N, Dural B, Yildirim K (2006) Effect of seaweed suspensions on seed germination of tomato, pepper and aubergine. J Biol Sci 6:1130–1133

    Article  Google Scholar 

  • Dhargalkar VK, Pereira N (2005) Seaweed: promising plant of the millennium. Sci Cult 71:60–66

    Google Scholar 

  • Durand N, Briand X, Meyer C (2003) The effect of marine bioactive substances (NPRO) and exogenous cytokinins on nitrate reductase activity in Arabidopsis thaliana. Physiol Plant 119:489–493

    Article  CAS  Google Scholar 

  • Ellis RH, Roberts EH (1981) The quantification of ageing and survival in orthodox seeds. Seed Sci Technol 9:373–409

    Google Scholar 

  • FAO (Food and Agriculture Organization of the United Nations) (2009) Tomato production statistic. FAO, Rome. http://faostat.fao.org/. Accessed 5 Jun 2010

  • Featonby-Smith BC, van Staden J (1983) The effect of seaweed concentrate on the growth of tomato plants in nematode-infested soil. Sci Hortic 20:137–146

    Article  CAS  Google Scholar 

  • Finnie JF, van Staden J (1985) Effect of seaweed concentrate and applied hormones on in vitro cultured tomato roots. J Plant Physiol 120:215–222

    Article  CAS  Google Scholar 

  • Foolad MR, Lin GY (1997) Genetic potential for salt tolerance during germination in Lycopersicon species. Hort Science 32:296–300

    Google Scholar 

  • Foolad MR, Lin GY (1998) Genetic analysis of low temperature tolerance during germination in tomato, Solanum lycopersicum Mill. Plant Breed 117:171–176

    Article  Google Scholar 

  • Fornes F, Sánchez-Perales M, Guadiola JL (2002) Effect of a seaweed extract on the productivity of ‘de Nules’ Clementine mandarin and Navelina orange. Bot Mar 45:486–489

    Article  Google Scholar 

  • Ganapathy Selvam G, Balamurugan M, Thinakaran T, Sivakumar K (2013) Developmental changes in the germination, growth and chlorophyllase activity of Vigna mungo L. using seaweed extract of Ulva reticulata Forsskål. Int Res J Pharma 4:252–254

    Google Scholar 

  • Ghoul M, Minet J, Bernard T, Dupray E, Cornier M (1995) Marine macroalgae as a source for osmoprotection for Escherichia coli. Microb Ecol 30:171–181

    Article  PubMed  CAS  Google Scholar 

  • Gireesh R, Haridevi CK, Salikutty J (2011) Effect of Ulva lactuca extract on growth and proximate composition of Vigna unguiculata l. Walp J Res Biol 8:624–630

    Google Scholar 

  • Gojón-Báez HH, Siqueiros-Beltrones DA, Hernández-Contreras H (1998) In situ ruminal digestibility and degradability of Macrocystis pyrifera and Sargassum spp. in bovine livestock. Cienc Mar 24:463–481

    Google Scholar 

  • Hajer AS, Malibari AA, Al-Zahrani HS, Almaghrabi OA (2006) Responses of three tomato cultivars to sea water salinity 1. Effect of salinity on the seedling growth. Afr J Biotech 5:855–861

    CAS  Google Scholar 

  • Henry EC (2005) Report of alkaline extraction of aquatic plants. Science Advisory Council, Aquatic Plant Extracts, p 6

  • Hong DD, Hien HM, Son PN (2007) Seaweeds from Vietnam used for functional food, medicine and biofertilizer. J Appl Phycol 19:817–826

    Article  Google Scholar 

  • Ito K, Tsuchiya Y (1981) Differential fatty acids composition of some marine algae associated with their habitat depths. Proc Int Seaweed Symp 8:573–577

    Google Scholar 

  • Kalaivanan C, Venkatesalu V (2012) Utilization of seaweed Sargassum myriocystum extracts as a stimulant of seedlings of Vigna mungo (L.) Hepper. Span J Agric Res 10:466–470

    Article  Google Scholar 

  • Kaveh HH, Nemati H, Farsi M, Jartoodeh SV (2011) How salinity affect germination and emergence of tomato lines. J Biol Environ Sci 5:159–163

    Google Scholar 

  • Khan W, Rayirath UP, Subramanian S, Jithesh MN, Rayorath P, Hodges DM, Critchley AT, Craigie JS, Norrie J, Prithiviraj B (2009) Seaweed extracts as biostimulants of plant growth and development. Plant Growth Regul 28:386–399

    Article  CAS  Google Scholar 

  • Kloareg B, Broquedis M, Joubert JM (1996) Effets éliciteurs des biostimulants. L'Arboriculture Fruitière 498:39–42

    Google Scholar 

  • Kumari R, Kaur I, Bhatnagar AK (2011) Effect of aqueous extract of Sargassum johnstonii Setchell & Gardner on growth, yield and quality of Lycopersicon esculentum Mill. J Appl Phycol 23:623–633

    Article  Google Scholar 

  • Lingakumar K, Jeyaprakash R, Manimuthu C, Haribaskar A (2004) Influence of Sargassum sp. crude extract on vegetative growth and biochemical characteristics in Zea mays and Phaseolus mungo. Seaweed Res Utiln 26:155–160

    Google Scholar 

  • Moller M, Smith ML (1998) The applicability of seaweed suspensions as priming treatments of Lettuce (Lactuca sativa L.) seeds. Seed Sci Technol 26:425–438

    Google Scholar 

  • Musyimi DM, Netondo GW, Ouma G (2007) Effects of salinity on growth and photosynthesis of avocado seedling. Int J Bot 3:78–84

    Article  CAS  Google Scholar 

  • Naidu BP, Jones GP, Paleg LG, Poljakoff-Mayber A (1987) Proline analogues in Melaleuca species: response of Melaleuca lanceolata and M. uncinata to water stress and salinity. Aust J Plant Physiol 14:669–677

    Article  CAS  Google Scholar 

  • Nyagah AW, Musyimi DM (2009) Effects of sodium chloride solution stress on germination and growth of passion fruits seedlings. ARPN J Ag Biol Sci 4:49–53

    Article  Google Scholar 

  • Orchard T (1977) Estimating the parameters of plant seedling emergence. Seed Sci Technol 5:61–69

    Google Scholar 

  • Pramanick B, Brahmachari K, Ghosh A (2013) Effect of seaweed saps on growth and yield improvement of green gram. Afr J Agric Res 8:1180–1186

    Google Scholar 

  • Reinhardt DH, Rost TL (1995) Primary and lateral root development of dark- and light-grown cotton seedlings under salinity stress. Bot Acta 108:403–465

    Article  Google Scholar 

  • Robledo D, Freile Pelegrin Y (1997) Chemical and mineral composition of six potentially edible seaweed species of Yucatán. Bot Mar 40:301–306

    Article  CAS  Google Scholar 

  • Rolland F, Moore B, Sheen J (2002) Sugar sensing and signaling in plants. The Plant Cell 14:185–205

    Google Scholar 

  • SAGARPA (2012) Acuerdo por el que se da a conocer el Plan de Manejo para la Pesquería de Macroalgas en Baja California, México. DOF. 30 de noviembre 2012

  • Sivasangari S, Nagaraj S, Vijayanand N (2010) Biofertilizing efficiency of brown and green algae on growth, biochemical and yield parameters of Cyamopsis tetragonolaba (L.) Taub. Rec Res Sci Tech 2:45–52

    Google Scholar 

  • Sridhar S, Rengasamy R (2010) Significance of seaweed liquid fertilizers for minimizing chemical fertilizer and improving yield of Arachis hypogaea under field trial. Rec Res Sci Tech 2:73–80

    Google Scholar 

  • Sridhar S, Rengasamy R (2011) Potential of seaweed liquid fertilizers (SLFS) on some agricultural crop with special reference to protein profile of seedlings. Int J Dev Res 7:55–57

    Google Scholar 

  • Stephenson WA (1974) Seaweed in agriculture and horticulture, 3rd edn. B and G Rateaver, Pauma Valley, p 241

    Google Scholar 

  • Stirk WA, Arthur GD, Lourens AF, Novák O, Strnad M, van Staden J (2004) Changes in cytokinin and auxin concentrations in seaweed concentrates when stored at an elevated temperature. J Appl Phycol 16:31–39

    Article  CAS  Google Scholar 

  • Sunarpi JA, Kurnianingsih R, Julisaniah NI, Nikmatullah A (2010) Effect of seaweed extracts on growth and yield of rice plants. Bioscience 2:73–77

    Google Scholar 

  • Thirumaran G, Arumugam M, Arumugam R, Anantharaman P (2009) Effect of seaweed liquid fertilizer on growth and pigment concentration of Abelmoschus esculentus (I) Medikus. Am Euras J Agron 2:57–66

    Google Scholar 

  • Verkleij FN (1992) Seaweed extracts in agriculture and horticulture: a review. Biol Agric Hortic 8:309–324

    Article  Google Scholar 

  • Villarreal-Sánchez JA, Ilyina A, Mendez-Jiménez LP, Robledo-Torres V, Rodríguez-Herrera R, Canales-López B, Rodríguez-Martínez J (2003) Isolation of microbial groups from a seaweed extract and comparison of their effects on a growth of pepper culture (Capsicum annuum L.). Moscow Univ Chem Bull 44:92–96

    Google Scholar 

  • Weges R, Karsssen CM (1990) The influence of redesiccation on dormancy and K+ leakage of primed lettuce seeds. Israeli J Bot 39:327–336

    CAS  Google Scholar 

  • Wightman F, Thimann KV (1980) Hormonal factors controlling the initiation and development of lateral roots. I. Sources of primordia-inducing substances in the primary root of pea seedlings. Physiol Plant 49:13–20

    Article  CAS  Google Scholar 

  • Wilczek CA, Ng T (1982) The promotion of seed germination in table beet by an aqueous seaweed extract. HortScience 17:629–630

    Google Scholar 

  • Yildirim E, Guvenc I (2006) Salt tolerance of pepper cultivars during germination and seedling growth. Turkish J Agric For 30:347–353

    CAS  Google Scholar 

  • Zodape ST, Mukhopadhyay S, Eswaran K, Reddy MP, Chikara J (2010) Enhanced yield and nutritional quality in green gram (Phaseolus radiata L.) treated with seaweed (Kappaphycus alvarezii) extract. J Sci Ind Res 69:468–471

    CAS  Google Scholar 

  • Zodape ST, Gupta A, Bhandari SC (2011) Foliar application of seaweed sap as biostimulant for enhancement of yield and quality of tomato (Lycopersicon esculentum Mill.). J Sci Ind Res 70:215–219

    Google Scholar 

Download references

Acknowledgments

The authors are grateful to Prof. Dr. Carla Vanessa Sánchez Hernández from the “Departamento de Producción Agrícola, Centro Universitario de Ciencias Biológicas y Agropecuarias (CUCBA) Universidad de Guadalajara” for her valuable suggestions during this research. Gustavo Hernández wishes to express his thanks for the fellowship granted under the program “Beca de exclusividad” of the “Comisión de Operación y Fomento de Actividades Académicas del IPN (COFAA)” and also the program “Estímulo al Desempeño de los Investigadores (EDI) del IPN.”

Authors thank to Biol. Kim Siewers for the English editing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gustavo Hernández-Carmona.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hernández-Herrera, R.M., Santacruz-Ruvalcaba, F., Ruiz-López, M.A. et al. Effect of liquid seaweed extracts on growth of tomato seedlings (Solanum lycopersicum L.). J Appl Phycol 26, 619–628 (2014). https://doi.org/10.1007/s10811-013-0078-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-013-0078-4

Keywords

Navigation