Skip to main content
Log in

BODIPY vital staining as a tool for flow cytometric monitoring of intracellular lipid accumulation in Nannochloropsis gaditana

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

The monitoring of lipid accumulation in microalgae is a key issue that needs an effective and fast method of analysis, mainly when biofuel-directed cultures are carried out. Boron-dipyrromethene (BODIPY), a green fluorescent lipophilic dye, was employed combined with flow cytometry for monitoring lipid storage in Nannochloropsis gaditana, an oleaginous marine microalga. Two growth conditions, nitrogen sufficiency and nitrogen starvation, were tested for evaluation of lipid accumulation. The removal of nitrogen from growth media resulted in a reduction in the chloroplast volume and the appearance of large intracellular lipid bodies compared with cells grown in nitrogen-sufficient media. Three concentrations of BODIPY were tested for optimization of the BODIPY lipid staining in microalgae: 1, 50 and 250 ng mL−1. A concentration of 1 ng mL−1 for percentage of fluorescent cell analysis and 50 ng mL−1 for mean fluorescence intensity analysis were shown to be optimal. BODIPY staining data showed results similar to the results obtained from the conventional gravimetric method. Application of the BODIPY staining together with flow cytometric analysis is a simple, rapid and reliable method for in situ monitoring of lipid accumulation in N. gaditana.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bigelow N, Hardin W, Barker J, Ryken S, MacRae A, Cattolico RA (2011) Comprehensive GC–MS sub-microscale assay for fatty acids and its applications. J Am Oil Chem Soc 88:1329–1338

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bligh EG, Dyer WJ (1959) A rapid method for total lipid extraction and purification. Can J Biochem Physiol 37:911–917

    Article  CAS  PubMed  Google Scholar 

  • Brennan L, Blanco Fernández A, Mostaert AS, Owende P (2012) Enhancement of BODIPY 505/515 lipid fluorescence method for applications in biofuel-directed microalgae production. J Microbiol Meth 90:137–143

    Article  CAS  Google Scholar 

  • Chen W, Zhang C, Song L, Sommerfeld M, Hu Q (2009) A high throughput Nile Red method for quantitative measurement of neutral lipids in microalgae. J Microbiol Meth 77:41–47

    Article  CAS  Google Scholar 

  • Chen W, Sommerfeld M, Hu Q (2011) Microwave-assisted Nile Red method for in vivo quantification of neutral lipids in microalgae. Bioresource Technol 102:135–141

    Article  CAS  Google Scholar 

  • Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294–306

    Article  CAS  PubMed  Google Scholar 

  • Cirulis JT, Strasser BC, Scott JA, Ross GM (2012) Optimization of staining conditions for microalgae with three lipophilic dyes to reduce precipitation and fluorescence variability. Cytometry Part A 81A:618–626

    Article  CAS  Google Scholar 

  • Cooper M, Hardin W, Petersen T, Cattolico R (2010) Visualizing green oil in live algal cells. J Biosci Bioeng 109:198–201

    Article  CAS  PubMed  Google Scholar 

  • Cysewski GR, Lorenz RT (2004) Industrial production of microalgal cell-mass and secondary products—species of high potential. In: Richmond A (ed) Handbook of Microalgae Culture: Biotechnology and Applied Phycology. Blackwell, London., pp 281–288

    Google Scholar 

  • Davey HM, Kell DB (1996) Flow cytometry and cell sorting of heterogeneous microbial populations: the importance of single-cell analyses. Microbiol Rev 60:641–696

    CAS  PubMed Central  PubMed  Google Scholar 

  • Davis RW, Volponi JV, Jones HDT, Carvalho BJ, Wu H, Singh S (2012) Multiplex fluorometric assessment of nutrient limitation as a strategy for enhanced lipid enrichment and harvesting of Neochloris oleoabundans. Biotechnol Bioeng 109:2503–2512

    Article  CAS  PubMed  Google Scholar 

  • De la Jara A, Mendoza H, Martel A, Molina C, Nordströn L, De la Rosa V, Díaz R (2003) Flow cytometric determination of lipid content in a marine dinoflagellate, Crypthecodinium cohnii. J Appl Phycol 15:433–438

    Article  Google Scholar 

  • Doan TY, Obbard JP (2011) Improved Nile Red staining of Nannochloropsis sp. J Appl Phycol 23:895–901

    Article  CAS  Google Scholar 

  • Donato MT, Martínez-Romero A, Jiménez N, Negro A, Herrera G, Castell JV, O’Connor JE, Gómez-Lechón MJ (2009) Cytometric analysis for drug induced steatosis in HepG2 cells. Chem-Biol Interact 181:417–423

    Article  CAS  PubMed  Google Scholar 

  • Donato MT, Tolosa L, Jiménez N, Castell JV, Gómez-Lechón MJ (2012) High-content imaging technology for the evaluation of drug-induced steatosis using a multiparametric cell-based assay. J Biomol Screen 17:394–400

    Article  CAS  PubMed  Google Scholar 

  • Elamin AA, Stehr M, Spallek R, Rohde M, Singh M (2011) The Mycobacterium tuberculosis Ag85A is a novel diacylglycerol acyltransferase involved in lipid body formation. Mol Microbiol 81:1577–1592

    Article  CAS  PubMed  Google Scholar 

  • Elsey D, Jameson D, Raleigh B, Cooney MJ (2007) Fluorescent measurement of microalgal neutral lipids. J Microbiol Meth 68:639–642

    Article  CAS  Google Scholar 

  • Folch J, Lees M, Sloane Stanley GH (1957) A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem 226:497–509

    CAS  PubMed  Google Scholar 

  • Fon Sing S, Isdepsky A, Borowitzka MA, Moheimani NR (2013) Production of biofuels from microalgae. Mitig Adapt Strat Global Change 18:47–72

    Article  Google Scholar 

  • Gocze PA, Freeman DA (1994) Factors underlying the variability of lipid droplet fluorescence in MA-10 Leydig tumor cells. Cytometry 17:151–158

    Article  CAS  PubMed  Google Scholar 

  • Gómez-Lechón MJ, Donato MT, Martínez-Romero A, Jiménez N, Castell JV, O’Connor JE (2007) A human hepatocellular in vitro model to investigate steatosis. Chem-Bio Interact 165:106–116

    Article  Google Scholar 

  • Gómez-Suaga P, Luzón-Toro B, Churamani D, Zhang L, Bloor-Young D, Patel S, Woodman P, Churchill G, Hilfiker S (2012) Leucine-rich repeat kinase 2 regulates autophagy through a calcium-dependent pathway involving NAADP. Hum Mol Genet 21:511–525

    Article  PubMed Central  PubMed  Google Scholar 

  • Gouveia L, Oliveira AC (2009) Microalgae as a raw material for biofuels production. J Ind Microbiol Biotechnol 36:269–274

    Article  CAS  PubMed  Google Scholar 

  • Govender T, Ramanna L, Rawat I, Bux F (2012) Improved Nile Red staining of Nannochloropsis sp. Bioresource Technol 114:507–511

    Article  CAS  Google Scholar 

  • Griffiths MJ, Harrison STL (2009) Lipid productivity as a key characteristic for choosing algal species for biodiesel production. J Appl Phycol 21:493–507

    Article  CAS  Google Scholar 

  • Guillard RRL, Ryther JH (1962) Studies of marine planktonic diatoms. I. Cyclotella nana Hustedt and Detonula confervacea Cleve. Can J Microbiol 8:229–239

    Article  CAS  PubMed  Google Scholar 

  • Han Y, Wen Q, Chen Z, Li P (2011) Review of methods used for microalgal lipid-content analysis. Energy Procedia 12:944–950

    Article  Google Scholar 

  • Hu Q (2004) Environmental effects on cell composition. In: Richmond A (ed) Handbook of Microalgae Culture: Biotechnology and Applied Phycology. Blackwell, London, pp 83–93

    Google Scholar 

  • Hu Q, Sommerfeld M, Jarvis E, Ghirardi M, Posewitz M, Seibert M, Darzins A (2008) Microalgal triacylglycerols as feedstocks for biofuel. Plant J 54:621–639

    Article  CAS  PubMed  Google Scholar 

  • Huang G, Chen F, Wei D, Zhang X, Chen G (2010) Biodiesel production by microalgal biotechnology. Appl Energ 87:38–46

    Article  CAS  Google Scholar 

  • Jinkerson R, Radakovits R, Posewitz M (2013) Genomic insights from the oleaginous model alga Nannochloropsis gaditana. Bioengineered 4:37–43

    Article  PubMed Central  PubMed  Google Scholar 

  • Kacmar J, Carlson R, Balogh SJ, Srienc F (2005) Staining and quantification of poly-3 hydroxybutyrate in Saccharomyces cerevisiae and Cupriavidus necator cell populations using automated flow cytometry. Cytometry Part A 69A:27–35

    Article  Google Scholar 

  • Lee JS, Mendez R, Heng HH, Yang ZQ, Zhang K (2012) Pharmacological ER stress promotes hepatic lipogenesis and lipid droplet formation. Am J Transl Res 4:102–13

    CAS  PubMed Central  PubMed  Google Scholar 

  • Li Q, Du W, Liu D (2008a) Perspectives of microbial oils for biodiesel production. Appl Microbiol Biotechnol 80:749–756

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Horsman M, Wang B, Wu N (2008b) Effects of nitrogen sources on cell growth and lipid accumulation of green alga Neochloris oleoabundans. Appl Microbio Biotechnol 81:629–636

    Article  CAS  Google Scholar 

  • Lubian LM (1982) Nannochloropsis gaditana sp. nov., una nueva Eustigmatophyceae marina. Lazaroa 4:287–293

    Google Scholar 

  • Manandhar-Shrestha K, Hildebrand M (2013) Development of flow cytometric procedures for the efficient isolation of improved lipid accumulation mutants in a Chlorella sp. microalga. J Appl Phycol 25:1643–1651

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mendoza H, De la Jara A, Carmona L, Freijares K (2010) Estimate by means of flow cytometry of variation in composition of fatty acids from Tetraselmis suecica in response to culture conditions. Aquacult Int 18:189–199

    Article  Google Scholar 

  • Merzlyak M, Chivkunova OB, Gorelova OA, Reshetnikova IV, Solovchenko AE (2007) Effect of nitrogen starvation on optical properties, pigments, and arachidonic acid content of the unicellular green alga Parietochloris incisa (Trebouxiophyceae, Chlorophyta). J Phycol 43:833–843

    Article  CAS  Google Scholar 

  • Montero MF, Aristizábal M, García Reina G (2011) Isolation of high-lipid content strains of the marine microalga Tetraselmis suecica for biodiesel production by flow cytometry and single-cell sorting. J Appl Phycol 23:1053–1057

    Article  CAS  Google Scholar 

  • Mou SL, Xu D, Ye NH, Zhang XW, Liang CW, Liang Q, Zheng Z, Zhuang ZM, Miao JL (2011) Rapid estimation of lipid content in an Antarctic ice alga (Chlamydomonas sp.) using the lipophilic fluorescent dye BODIPY505/515. J Appl Phycol 24:1169–1176

    Article  Google Scholar 

  • O’Rourke EJ, Soukas A, Carr C, RuvKun G (2009) C. elegans major fats are stored in vesicles distinct from lysosome-related organelles. Cell Metab 10:430–435

    Article  PubMed Central  PubMed  Google Scholar 

  • Pereira H, Barreira L, Mozes A, Florindo C, Polo C, Duarte CV, Custódio L, Varela J (2011) Microplate-based high throughput screening procedure for the isolation of lipid-rich marine microalgae. Biotechnol Biofuels 4:61. doi:10.1186/1754-6834-4-61

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pribyl P, Cepák V, Zachleder V (2012) Production of lipids and formation and mobilization of lipid bodies in Chlorella vulgaris. J Appl Phycol 25:545–553

    Article  Google Scholar 

  • Radakovits R, Jinkerson R, Fuerstenberg S, Tae H, Settlage R, Boore J, Posewitz M (2012) Draft genome sequence and genetic transformation of the oleaginous alga Nannochloropsis gaditana. Nature Comm 3:686

    Article  Google Scholar 

  • Rocha J, García J, Henriques M (2003) Growth aspects of marine microalga Nannochloropsis gaditana. Biomol Eng 20:237–242

    Article  CAS  PubMed  Google Scholar 

  • Rodolfi L, Zittelli GC, Bassi N, Padovani G, Biondi N, Bonini G, Tredici MR (2009) Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnol Bioeng 102:100–112

    Article  CAS  PubMed  Google Scholar 

  • Shen Y, Pei Z, Yuan W, Mao E (2009) Effect of nitrogen and extraction method on algae lipid yield. Int J Agric Biol Eng 2:51–57

    CAS  Google Scholar 

  • Simionato D, Sforza E, Corteggiani E, Bertucco A, Giacometti G, Morosinotto T (2011) Acclimatation of Nannoclhoropsis gaditana to different illumination regimes: effects on lipids accumulation. Bioresource Technol 102:6026–6032

    Article  CAS  Google Scholar 

  • Simionato D, Block M, La Rocca N, Jouhet J, Maréchal E, Finazzi G, Morosinotto T (2013) The response of Nannochloropsis gaditana to nitrogen starvation includes de novo biosynthesis of triacylglycerols, a decrease of chloroplast galactolipids, and reorganization of the photosynthetic apparatus. Eukaryotic Cell 12:665–676

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sinetova MP, Markelova AG, Los DA (2006) The effect of nitrogen starvation on the ultrastructure and pigment composition of chloroplasts in the acidothermophilic microalga Galdieria sulphuraria.Russ. J Plant Physiol 53:153–162

    CAS  Google Scholar 

  • Singh J, Gu S (2010) Commercialization potential of microalgae for biofuels production. Ren Sust Energy Rev 14:2596–2610

    Article  CAS  Google Scholar 

  • Wang ZT, Ullrich N, Joo S, Waffenschmidt S, Goodenough U (2009) Algal lipid bodies: stress induction, purification, and biochemical characterization in wild-type and starchless Chlamydomonas reinhardtii. Eukaryot Cell 8:1856–1868

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wang S, Pan Y, Liu C, Chuang L, Chen C (2011) Characterization of a green microalga UTEX 2219–4: effects of photosynthesis and osmotic stress on oil body formation. Bot Stud 52:305–312

    CAS  Google Scholar 

  • Work V, Radakovits R, Jinkerson R, Mauser J, Elliott L, Vinyard D, Laurens L, Dismukes G, Posewitz M (2010) Increased lipid accumulation in the Chlamydomonas reindhardtii sta7-10 starchless isomylase mutant and increased carbohydrate synthesis in complement strains. Eukaryot Cell 9:1251–1261

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Xu D, Gao Z, Li F, Fan X, Zhang X, Ye N, Mou S, Liang Z, Li D (2013) Detection and quantitation of lipid in the microalga Tetraselmis subcordiformis (Wille) Butcher with BODIPY 505/515 staining. Bioresource Technol 127:386–390

    Article  CAS  Google Scholar 

  • Zmora O, Richmond A (2004) Microalgae production for aquaculture. In: Richmond A (ed) Handbook of Microalgae Culture Biotechnology and Applied Phycology. Blackwell, London, pp 365–379

    Google Scholar 

Download references

Acknowledgments

This study was conducted with the support of the Basque Government, through the EMAITEK program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vanessa Benito.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Benito, V., Goñi-de-Cerio, F. & Brettes, P. BODIPY vital staining as a tool for flow cytometric monitoring of intracellular lipid accumulation in Nannochloropsis gaditana . J Appl Phycol 27, 233–241 (2015). https://doi.org/10.1007/s10811-014-0310-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-014-0310-x

Keywords

Navigation