Skip to main content
Log in

Perspectives of microbial oils for biodiesel production

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Biodiesel has become more attractive recently because of its environmental benefits, and the fact that it is made from renewable resources. Generally speaking, biodiesel is prepared through transesterification of vegetable oils or animal fats with short chain alcohols. However, the lack of oil feedstocks limits the large-scale development of biodiesel to some extent. Recently, much attention has been paid to the development of microbial, oils and it has been found that many microorganisms, such as algae, yeast, bacteria, and fungi, have the ability to accumulate oils under some special cultivation conditions. Compared to other plant oils, microbial oils have many advantages, such as short life cycle, less labor required, less affection by venue, season and climate, and easier to scale up. With the rapid expansion of biodiesel, microbial oils might become one of potential oil feedstocks for biodiesel production in the future, though there are many works associated with microorganisms producing oils need to be carried out further. This review is covering the related research about different oleaginous microorganisms producing oils, and the prospects of such microbial oils used for biodiesel production are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Reference

  • Alexander W, Trond EE, Hans-Kristian K, Sergey BZ, Mimmi TH (2007) Bacterial metabolism of long-chain n-alkanes. Appl Microbiol Biotechnol 76:1209–1221

    Article  CAS  Google Scholar 

  • Alvarez HM, Steinbuchel A (2002) Triacylglycerols in prokaryotic microorganisms. Appl Microbiol Biotechnol 60:367–376

    Article  CAS  PubMed  Google Scholar 

  • Angerbauer C, Siebenhofer M, Mittelbach M, Guebitz GM (2008) Conversion of sewage sludge into lipids by Lipomyces starkeyi for biodiesel production. Bioresour Technol 99:3051–3056

    Article  CAS  PubMed  Google Scholar 

  • Carriquiry M (2007) US biodiesel production: recent developments and prospects. Iowa Ag Review 13:8, 9, 11

    Google Scholar 

  • Certik M, Balteszova L, Sajbidor J (1997) Lipid formation and clinolenic acid production by Mucorales fungi grown on sunflower oil. Appl Microbiol Biotechnol 25:101–105

    CAS  Google Scholar 

  • Chen HC, Chang CC (1996) Production of γ-linolenic acid by the fungus Cunninghamella echinulata CCRC 31840. Biotechnol Prog 12:338–341

    Article  CAS  Google Scholar 

  • Chen HC, Liu TM (1997) Inoculum effects on the production of γ-linolenic acid by the shake culture of Cunninghamella echinulata CCRC 31840. Enzyme Microb Technol 21:137–142

    Article  CAS  Google Scholar 

  • Chen GQ, Jiang Y, Chen F (2008) Variation of lipid class composition in Nitzschia laevis as a response to growth temperature change. Food Chem 109:88–94

    Article  CAS  PubMed  Google Scholar 

  • Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294–306

    Article  CAS  PubMed  Google Scholar 

  • Chisti Y (2008) Biodiesel from microalgae beats bioethanol. Trends Biotechnol 26(3):126–131

    Article  CAS  PubMed  Google Scholar 

  • Du J, Wang HX, Jin HL, Yang KL, Zhang XY (2007) Fatty acids production by fungi growing in sweet potato starch processing waste water. Chin J Bioprocess Eng 5(1):33–36

    CAS  Google Scholar 

  • Felizardo P, Correia MJN, Raposo I, Mendes JF, Berkemeier R, Bordado JM (2006) Production of biodiesel from waste frying oil. Waste Manage 26(5):487–494

    Article  CAS  Google Scholar 

  • Gema H, Kavadia A, Dimo D, Tsagou V, Komaitis M, Aggelis G (2002) Production ofγ-linolenic acid by Cunninghamella echinulata cultivated on glucose and orange peel. Appl Microbiol Biotechnol 58:303–307

    Article  CAS  PubMed  Google Scholar 

  • Han X, Miao XL, Wu QY (2006) High quality biodiesel production from heterotrophic growth of chlorella Protothecoides in fermenters by using starch hydrolysate as organic carbon. J Biotech 126(4):499–507 2005 China Biomass Energy Technology and Sustainable Development Seminar Essays

    Article  CAS  Google Scholar 

  • Hannson L, Dostalek M, Srenby B (1989) Production of γ-linolenic acid by the fungus Mucor rouxii in fed-batch and continuous culture. Appl Microbiol Biotechnol 31:223–227

    Google Scholar 

  • Hiruta O, Yamamura K, Takebe H, Futamura T, Iinuma K, Tanaka H (1997) Application of Maxblend fermenter for microbial processes. J Ferment Bioeng 83:79–86

    Article  CAS  Google Scholar 

  • Huang JZ, Shi QQ, Zhou XL, Lin YX, Xie BF, Wu SG (1998) Studies on the breeding of mortierella isabellina mutant high producing lipid and its fermentation conditions. Microbiology 25(4):187–191

    CAS  Google Scholar 

  • Illman AM, Scragg AH, Shales SW (2000) Increase in Chlorella strains calorific values when grown in low nitrogen medium. Enzyme Microb Technol 27:631–635

    Article  CAS  PubMed  Google Scholar 

  • Kalscheuer R, Stolting T, Steinbuchel A (2006) Microdiesel: Escherichia coli engineered for fuel production. Microbiology 152:2529–2536

    CAS  PubMed  Google Scholar 

  • Kazuyoshi K, Masakazu Y, Yasushi K (2006) Inhibition of lipid accumulation and lipid body formation in oleaginous yeast by effective components in spices, carvacrol, eugenol, thymol and piperine. Agriculture and Food Chemistry 54:3528–3534

    Article  CAS  Google Scholar 

  • Khozin-Goldberg I, Cohen Z (2006) The effect of phosphate starvation on the lipid and fatty acid composition of the fresh water eustigmatophyte Monodus subterraneus. Phytochemistry 67:696–701

    Article  CAS  PubMed  Google Scholar 

  • Kong XL, Liu B, Zhao ZB, Feng B (2007) Microbial production of lipids by cofermentation of Glucose and xylose with Lipomyces starkeyi 2#. Chin J Bioprocess Eng 5(2):36–41

    CAS  Google Scholar 

  • Kulkarni MG, Dalai AK (2006) Waste cooking oil—an economical source for biodiesel: A review. Ind Eng Chem Res 45:2901–2913

    Article  CAS  Google Scholar 

  • Li Q, Wang MY (1997) Use food industry waste to produce microbial oil. Science and Technology of Food Industry 6:65–69

    Google Scholar 

  • Li YH, Liu B, Zhao ZB, Bai FW (2006) Optimized culture medium and fermentation conditions for lipid production by Rhodosporidium toruloides. Chin J Biotechnol 22(4):650–656

    Article  CAS  Google Scholar 

  • Li YH, Zhao ZB, Bai FW (2007a) High-density cultivation of oleaginous yeast Rhodosporidium toruloides Y4 in fed-batch culture. Enzyme Microb Technol 41:312–317

    Article  CAS  Google Scholar 

  • Li W, Du W, Li YH, Liu DH, Zhao ZB (2007b) Enzymatic Transesterification of Yeast Oil for Biodiesel Fuel Production. Chin J Process Eng 7(1):137–140

    CAS  Google Scholar 

  • Li J, Liu HJ, Zhang JA, Liu J (2007c) Progress in and prospect of microbial lipid production by fermentation. Mod Chem Indust 27(2):133–136

    Google Scholar 

  • Liang XA, Dong WB, Miao XJ, Dai CJ (2006) Production technology and influencing factors of microorganism grease. Food Res Dev 27(3):46–47

    CAS  Google Scholar 

  • Liu B, Zhao ZB (2007) Biodiesel production by direct methanolysis of oleaginous microbial biomass. J Chem Technol Biotechnol 82:775–780

    Article  CAS  Google Scholar 

  • Liu SJ, Yang WB, Shi AH (2000) Screening of the high lipid production strains and studies on its flask culture conditions. Microbiology 27(2):93–97

    CAS  Google Scholar 

  • Liu ZY, Wang GC, Zhou BC (2007) Effect of iron on growth and lipid accumulation in Chlorella vulgaris. Bioresour Technol 99:4717–4722

    Article  CAS  PubMed  Google Scholar 

  • Ma YL (2006) Microbial oils and its research advance. Chin J Bioprocess Eng 4(4):7–11

    CAS  Google Scholar 

  • Mainul H, Philippe JB, Louis MG, Alain P (1996) Influence of Nitrogen and Iron Limitations on Lipid Production by Cryptococcus curvatus Grown in Batch and Fed-batch Culture. Process Biochem 31(4):355–361

    Article  Google Scholar 

  • Metting F (1996) Biodiversity and application of microalgae. J Indust Microbiol Biotechnol 17:477–489

    Article  CAS  Google Scholar 

  • Miao XL, Wu QY (2004) Bio-oil fuel production from microalgae after heterotrophic growth. Renewable Energy Resources 4(116):41–44

    Google Scholar 

  • Meesters P, Huijberts G, Eggink G (1996) High-cell-density cultivation of the lipid accumulating yeast Cryptococcus curvatus using glycerol as a carbon source. Appl Microbiol Biotechnol 45:575–579

    Article  CAS  Google Scholar 

  • Mona KG, Sanaa HO, Linda MA (2008) Single cell oil production by Gordonia sp. DG using agro-industrial wastes. World J Microbiol Biotechnol 24(9):1703–1711 doi:10.1007/s11274-008-9664-z

    Article  CAS  Google Scholar 

  • Patnayak S, Sree A (2005) Screening of bacterial associates of marine sponges for single cell oil and PUFA. Lett Appl Microbiol 40:358–363

    Article  CAS  PubMed  Google Scholar 

  • Peer M, Skye R, Thomas H, Evan S, Ute C, Jan H, Clemens P, Olaf K, Ben H (2008) Second generation biofuels: high-efficiency microalgae for biodiesel production. Bioenergy Research 1(1):20–43 doi:10.1007/s12155-008-9008-8

    Article  Google Scholar 

  • Pulz O (2001) Photobioreactors: production systems for phototrophic microorganisms. Appl Microbiol Biotechnol 57:287–293

    Article  CAS  PubMed  Google Scholar 

  • Seraphim P, Michael K, George A (2004) Single cell oil (SCO) production by Mortierella isabellina grown on high-sugar content media. Bioresour Technol 95:287–291

    Article  CAS  Google Scholar 

  • Sheehan J, Dunahay T, Benemann J, Roessler P (1998) A look back at the US Department of Energy’s Aquatic Species Program—biodiesel from algae. US Department of Energy, Washington, D.C. NREL: NREL/TP-580-24190

    Google Scholar 

  • Shen JJ, Li FC, Yang QL, Feng DW, Qin S, Zhao ZB (2007) Fermentation of Spartina anglica acid hydrolysate by Trichosporon cutaneum for microbial lipid production. Marine Sci 3(8):38–41

    Google Scholar 

  • Shi AH, Gu JS, Liu SJ, Ma YJ (1997) Screening high oil yield yeast strains, fermentation conditions optimization and fat composition analysis. China Brewing 4:10–13

    Google Scholar 

  • Sims B (2007) Biodiesel: a Global Perspective. Biodiesel Magazine http://www.biodieselmagazine.com/article.jsp?article_id=1961

  • Solovchenko AE, Khozin-Goldberg I, Didi-Cohen S, Cohen Z, Merzlyak MN (2008) Effects of light intensity and nitrogen starvation on growth, total fatty acids and arachidonic acid in the green microalga Parietochloris incisa. J Appl Phycol 20:245–251

    Article  CAS  Google Scholar 

  • US National Biodiesel Board (2008) http://www.biodiesel.org/pdf_files/fuelfactsheets/Production_Graph_Slide.pdf

  • Wang L, Sun YM, Wang PZ, Zhao ZB (2005) Effects of metal ions on l ipid production by fermentation with Trichosporon fermentans. J Dalian Institute Light Indust 24(4):259–262

    CAS  Google Scholar 

  • Yan Z, Chen J (2003) Research advance on microbial oils and their exploitation and utilization. Journal of Cereals & Oils 7:13–15

    Google Scholar 

  • Yi SJ, Zheng YP (2006) Research and application of oleaginous microorganism. China Foreign Energy 11(2):90–94

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Du.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Q., Du, W. & Liu, D. Perspectives of microbial oils for biodiesel production. Appl Microbiol Biotechnol 80, 749–756 (2008). https://doi.org/10.1007/s00253-008-1625-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-008-1625-9

Keywords

Navigation