Skip to main content
Log in

Production of lipids and formation and mobilization of lipid bodies in Chlorella vulgaris

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

We investigated the formation of lipid bodies in the microalga Chlorella vulgaris CCALA 256 under lipid-induction conditions in autotrophically grown cultures. We found that cell division ceased after depletion of nitrates from the growth medium within the first days of cultivation. The growth of non-dividing cells subsequently led to the rapid accumulation of lipids. We describe in detail both biogenesis and mobilization of lipid bodies using fluorescence and transmission electron microscopy. Small lipid bodies fused very soon after their creation in the cytosol, forming, eventually, one huge lipid body. In stationary growth phase, lipids were present in the form of a large lipid body occupying most of the cell volume. After replenishment of nitrogen, lipid content decreased rapidly and, within 24 hours, the large lipid body was fragmented into smaller ones. This mobilization of the cellular lipid store occurred independently of light.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917

    Article  PubMed  CAS  Google Scholar 

  • Campbell PK, Beer T, Batten D (2011) Life cycle assessment of biodiesel production from microalgae in ponds. Bioresour Technol 102:50–56

    Article  PubMed  CAS  Google Scholar 

  • Davidi L, Katz A, Pick U (2012) Characterization of major lipid droplet proteins from Dunaliella. Planta 236:19–33

    Google Scholar 

  • Eastmond PJ (2006) SUGAR-DEPENDENT1 encodes a patatin domain triacylglycerol lipase that initiates storage oil breakdown in germinating Arabidopsis seeds. Plant Cell 18:665–675

    Article  PubMed  CAS  Google Scholar 

  • Eltgroth ML, Watwood RL, Wolfe GV (2005) Production and cellular localization of neutral long-chain lipids in the haptophyte algae Isochrysis galbana and Emiliania huxleyi. J Phycol 41:1000–1009

    Article  CAS  Google Scholar 

  • Gallagher BJ (2011) The economics of producing biodiesel from algae. Renew Energ 36:158–162

    Article  CAS  Google Scholar 

  • Goodson C, Roth R, Wang ZT, Goodenough U (2011) Structural correlates of cytoplasmic and chloroplast lipid body synthesis in Chlamydomonas reinhardtii and stimulation of lipid body production with acetate boost. Eukaryot Cell 10:1592–1606

    Article  PubMed  CAS  Google Scholar 

  • Graham IA, Denby KJ, Leaver CJ (1994) Carbon catabolite repression regulates glyoxylate cycle gene expression in higher plants. Plant Cell 6:761–772

    PubMed  CAS  Google Scholar 

  • Halim R, Gladman B, Danquah MK, Webley PA (2011) Oil extraction from microalgae for biodiesel production. Bioresour Technol 102:178–185

    Article  PubMed  CAS  Google Scholar 

  • Hu Q, Sommerfeld M, Jarvis E, Ghirardi M, Posewitz M, Seibert M, Darzins A (2008) Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J 54:621–639

    Article  PubMed  CAS  Google Scholar 

  • Illman AM, Scragg AH, Shales SW (2000) Increase in Chlorella strains calorific values when grown in low nitrogen medium. Enzym Microb Technol 27:631–635

    Article  CAS  Google Scholar 

  • Khozin-Goldberg I, Shrestha P, Cohen Z (2005) Mobilization of arachidonyl moieties from triacylglycerols into chloroplastic lipids following recovery from nitrogen starvation of the microalga Parietochloris incisa. Biochim Biophys Acta 1738:63–71

    Article  PubMed  CAS  Google Scholar 

  • Krohn BJ, McNeff CV, Yan B, Nowlan D (2011) Production of algae-based biodiesel using the continuous catalytic Mcgyan® process. Bioresour Technol 102:94–100

    Article  PubMed  CAS  Google Scholar 

  • Larson TR, Harrison PJ (1997) Storage lipid metabolism during nitrogen assimilation in a marine diatom. In: Williams JP (ed) Physiology, biochemistry, and molecular biology of plant lipids. Kluwer Academic, Dordrecht, pp 256–258

    Google Scholar 

  • Lee DH (2011) Algal biodiesel economy and competition among bio-fuels. Bioresour Technol 102:43–49

    Article  PubMed  CAS  Google Scholar 

  • Li Y, Lian S, Tong D, Song R, Yang W, Fan Y, Qing R, Hua C (2011a) One-step production of biodiesel from Nannochloropsis sp. on solid base Mg–Zr catalyst. Appl Energy 88:3313–3317

    Article  CAS  Google Scholar 

  • Li Y, Han D, Sommerfeld M, Hu Q (2011b) Photosynthetic carbon partitioning and lipid production in the oleaginous microalga Pseudochlorococcum sp. (Chlorophyceae) under nitrogen-limited conditions. Bioresour Technol 102:123–129

    Article  PubMed  CAS  Google Scholar 

  • Liu CP, Lin LP (2001) Ultrastructural study and lipid formation of Isochrysis sp. CCMP 1324. Bot Bull Acad Sin 42:207–214

    CAS  Google Scholar 

  • Lv J-M, Cheng L-H, Xu X-H, Zhang L, Chen H-L (2010) Enhanced lipid production of Chlorella vulgaris by adjustment of cultivation conditions. Bioresour Technol 101:6797–6804

    Article  PubMed  CAS  Google Scholar 

  • Makri A, Bellou S, Birkou M, Papatrehas K, Dolapsakis NP, Bokas D, Papanikolaou S, Aggelis G (2011) Lipid synthesized by micro-algae grown in laboratory- and industrial-scale bioreactors. Eng Life Sci 11:52–58

    Article  CAS  Google Scholar 

  • Martin T, Oswald O, Graham IA (2002) Arabidopsis seedling growth, storage lipid mobilization, and photosynthetic gene expression are regulated by carbon:nitrogen availability. Plant Physiol 128:472–481

    Article  PubMed  CAS  Google Scholar 

  • Merchant SS, Kropat J, Liu B, Shaw J, Warakanont J (2011) TAG, You're it! Chlamydomonas as a reference organism for understanding algal triacylglycerol accumulation. Curr Opin Biotechnol 23:1–12

    Google Scholar 

  • Merzlyak MN, Chivkunova OB, Gorelova OA, Reshetnikova IV, Solovchenko AE, Khozin-Goldberg I, Cohen Z (2007) Effect of nitrogen starvation on optical properties, pigments, and arachidonic acid content of the unicellular green alga Parietochloris incisa (Trebouxiophyceae, Chlorophyta). J Phycol 43:833–843

    Article  CAS  Google Scholar 

  • Mock T, Kroon BMA (2002) Photosynthetic energy conversion under extreme conditions—I: important role of lipids as structural modulators and energy sink under N-limited growth in Antarctic sea ice diatoms. Phytochemistry 61:41–51

    Article  PubMed  CAS  Google Scholar 

  • Moellering ER, Benning C (2010) RNAi silencing of a major lipid droplet protein affects lipid droplet size in Chlamydomonas reinhardtii. Eukaryot Cell 9:97–106

    Article  PubMed  CAS  Google Scholar 

  • Mutlu YB, Işık O, Uslu L, Koç K, Durmaz Y (2011) The effects of nitrogen and phosphorus deficiencies and nitrite addition on the lipid content of Chlorella vulgaris (Chlorophyceae). Afr J Biotechnol 10:453–456

    CAS  Google Scholar 

  • Parthibane V, Rajakumari S, Venkateshwari V, Iyappan R, Rajasekharan R (2012) Oleosin is bifunctional enzyme that has both monoacylglycerol acyltransferase and phospholipase activities. J Biol Chem 287:1946–1954

    Article  PubMed  CAS  Google Scholar 

  • Patil PD, Gude VG, Mannarswamy A, Deng S, Cooke P, Munson-McGee S, Rhodes I, Lammers P, Nirmalakhandan N (2011) Optimization of direct conversion of wet algae to biodiesel under supercritical methanol conditions. Bioresour Technol 102:118–122

    Article  PubMed  CAS  Google Scholar 

  • Peled E, Leu S, Zarka A, Weiss M, Pick U, Khozin-Goldberg I, Boussiba S (2011) Isolation of a novel oil globule protein from the green alga Haematococcus pluvialis (Chlorophyceae). Lipids 46:851–861

    Article  PubMed  CAS  Google Scholar 

  • Pruvost J, Van Vooren G, Le Gouic B, Couzinet-Mossion A, Legrand J (2011) Systematic investigation of biomass and lipid productivity by microalgae in photobioreactors for biodiesel application. Bioresour Technol 102:150–158

    Article  PubMed  CAS  Google Scholar 

  • Přibyl P, Cepák V, Zachleder V (2012a) Production of lipids in 10 strains of Chlorella and Parachlorella, and enhanced lipid productivity in Chlorella vulgaris. Appl Microbiol Biotechnol 94:549–561

    Article  PubMed  Google Scholar 

  • Přibyl P, Eliáš M, Cepák V, Lukavský J, Kaštánek P (2012b) Zoosporogenesis, morphology, ultrastructure, pigment composition and phylogenetic position of Trachydiscus minutus (Eustigmatophyceae, Heterokontophyta). J Phycol 48:231–242

    Article  Google Scholar 

  • Ramazanov A, Ramazanov Z (2006) Isolation and characterization of a starchless mutant of Chlorella pyrenoidosa STL-PI with a high growth rate, and high protein and polyunsaturated fatty acid content. Phycol Res 54:255–259

    Article  CAS  Google Scholar 

  • Ratledge C (2004) Fatty acid biosynthesis in microorganisms being used for single cell oil production. Biochimie 86:807–815

    Article  PubMed  CAS  Google Scholar 

  • Rodolfi L, Chini Zitelli G, Bassi N, Padovani G, Biondi N, Bonini G, Tredici MR (2009) Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnol Bioeng 102:100–112

    Article  PubMed  CAS  Google Scholar 

  • Roessler PG (1990) Environmental control of glycerolipid metabolism in microalgae: commercial implications and future research directions. J Phycol 26:393–399

    Article  CAS  Google Scholar 

  • Siaut M, Cuine S, Cagnon C, Fessler B, Nguyen M, Carrier P, Beyly A, Beisson F, Triantaphylides C, Li-Beisson YH, Peltier G (2011) Oil accumulation in the model green alga Chlamydomonas reinhardtii: characterization, variability between common laboratory strains and relationship with starch reserves. BMC Biotechnol 11:7–21

    Article  PubMed  CAS  Google Scholar 

  • Singh A, Olsen SI (2011) A critical review of biochemical conversion, sustainability and life cycle assessment of algal biofuels. Appl Energy 88:3548–3555

    Article  CAS  Google Scholar 

  • Solovchenko AE, Chivkunova OB, Maslova IP (2011) Pigment composition, optical properties, and resistance to photodamage of the microalga Haematococcus pluvialis cultivated under high light. Russ J Plant Physiol 58:9–17

    Article  CAS  Google Scholar 

  • Solovchenko AE (2012) Physiological role of neutral lipid accumulation in eukaryotic microalgae under stresses. Russ J Plant Physiol 59:167–176

    Article  CAS  Google Scholar 

  • Spoehr HA, Milner HW (1949) The chemical composition of Chlorella; effect of environmental conditions. Plant Physiol 24:120–149

    Article  PubMed  CAS  Google Scholar 

  • Subhadra BG (2010) Sustainability of algal biofuel production using integrated renewable energy park (IREP) and algal biorefinery approach. Energ Pol 38:5892–5901

    Article  Google Scholar 

  • Wang ZT, Ullrich N, Joo S, Waffenschmidt S, Goodenough U (2009) Algal lipid bodies: stress induction, purification, and biochemical characterization in wild-type and starchless Chlamydomonas reinhardtii. Eukaryot Cell 8:1856–1868

    Article  PubMed  CAS  Google Scholar 

  • Work VH, Radakovits R, Jinkerson RE, Meuser JE, Elliott LG, Vinyard DJ, Laurens LML, Dismukes GC, Posewitz MC (2010) Increased lipid accumulation in the Chlamydomonas reinhardtii sta710 starchless isoamylase mutant and increased carbohydrate synthesis in complemented strains. Eukaryot Cell 9:1251–1261

    Article  PubMed  CAS  Google Scholar 

  • Xiong W, Liu L, Wu C, Yang C, Wu Q (2010) 13C-tracer and gas chromatography–mass spectrometry analyses reveal metabolic flux distribution in the oleaginous microalga Chlorella protothecoides. Plant Physiol 154:1001–1011

    Article  PubMed  CAS  Google Scholar 

  • Yu Y, Chen BL, You WL (2007) Identification of the alga known as Nannochloropsis Z-1 isolated from a prawn farm in Hainan, China as Chlorella. World J Microbiol Biotechnol 23:207–210

    Article  Google Scholar 

  • Zachleder V, Šetlík I (1982) Effect of irradiance on the course of RNA synthesis in the cell cycle of Scenedesmus quadricauda. Biol Plant 24:341–353

    Article  CAS  Google Scholar 

  • Zheng H, Yin J, Gao Z, Huang H, Ji X, Dou C (2011) Disruption of Chlorella vulgaris cells for the release of biodiesel-producing lipids: a comparison of grinding, ultrasonication, bead milling, enzymatic lysis, and microwaves. Appl Biochem Biotechnol 164:1215–1224

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Prof. John Brooker for editing the English. This work was supported by the Ministry of Education and Youth of the Czech Republic, project no: 1M0571, a long-term research development project no. RVO 67985939, and by the Japan Science and Technology Agency, project CRST.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pavel Přibyl.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Přibyl, P., Cepák, V. & Zachleder, V. Production of lipids and formation and mobilization of lipid bodies in Chlorella vulgaris . J Appl Phycol 25, 545–553 (2013). https://doi.org/10.1007/s10811-012-9889-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-012-9889-y

Keywords

Navigation