Skip to main content

Advertisement

Log in

Cadmium toxicity impacts plant growth and plant remediation strategies

  • Review
  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Heavy metal (HM) contamination in agricultural soils has become a prime concern for today’s society, as it entails environmental risks. Cadmium (Cd) is extremely toxic and carcinogenic, as it shows devastating effects on human health, and crop growth and productivity. Plants are the main source of heavy metal entry into the food chain, which originates due to anthropogenic activities (mining, smelting, and sewage sludge), results in enhanced Cd contamination in the environment. In crops, Cd antagonistically competes with nutrients acquisition and disturb plant physiological attributes, thus restricting plant survival in polluted soils. Therefore, a comprehensive review of environmentally friendly management practices for Cd-resilience crops is of utmost urgency. Thus, in this review we aim to advance our understanding in an integrated way to remediate heavy metals, identifying Cd-tolerant cultivars, selective breeding of low Cd-accumulating cultivars, Cd-tolerant plant growth-promoting rhizobacteria. Moreover, to understand molecular mechanisms and identify genes potentially implicated in Cd-tolerance with the final aim of engineering a perfect bioremediation ensemble to be used in the recovery of polluted soils, agroecosystems restoration, the reduction of environmental, and food-feed-associated risks, and ultimately protecting animal and human health. This may help to determine the ecological importance of Cd pollution in interdisciplinary studies and offers crucial remediation strategies to prevent the dispersion of Cd contamination in agricultural soils, to ensure global food security problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abbas T, Rizwan M, Ali S, Adrees M, Zia-ur-Rehman M, Qayyum MF, Ok YS, Murtaza G (2018) Effect of biochar on alleviation of cadmium toxicity in wheat (Triticum aestivum L.) grown on Cd-contaminated saline soil. Environ Sci Pollut Res 25(26):25668–25680

    Article  CAS  Google Scholar 

  • Abe T, Taguchi-Shiobara F, Kojima Y, Ebitani T, Kuramata M, Yamamoto T, Yano M, Ishikawa S (2011) Detection of a QTL for accumulating Cd in rice that enables efficient Cd phytoextraction from soil. Breed Sci 61(1):43–51

    Article  CAS  Google Scholar 

  • Abe T, Nonoue Y, Ono N, Omoteno M, Kuramata M, Fukuoka S, Yamamoto T, Yano M, Ishikawa S (2013) Detection of QTLs to reduce cadmium content in rice grains using LAC23/Koshihikari chromosome segment substitution lines. Breed Sci 63(3):284–291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Abe T, Kuramata M, Igura M, Arao T, Makino T, Sunohara Y, Kuroki M, Ishikawa S (2017) Koshihikari Kan no. 1’, a new rice variety with nearly cadmium-free in grains. Breed Res 19:109–115

  • Ahmad A, Hadi F, Ahmad H, Jan AU, Rahman K, Ahmad S (2017) Salinity in soil increased cadmium uptake and accumulation potential of two terrestrial plants. Int J Biosci (IJB) 10:132–142

    Article  CAS  Google Scholar 

  • Alharby HF, Al-Zahrani HS, Hakeem KR, Alsamadany H, Desoky E-SM, Rady MM (2021) Silymarin-enriched biostimulant foliar application minimizes the toxicity of cadmium in maize by suppressing oxidative stress and elevating antioxidant gene expression. Biomolecules 11(3):465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anjum SA, Tanveer M, Hussain S, Bao M, Wang L, Khan I, Ullah E, Tung SA, Samad RA, Shahzad BJES, Research P (2015) Cadmium toxicity in Maize (Zea mays L.): consequences on antioxidative systems reactive oxygen species and cadmium accumulation. Environ Sci Pollut Res. 22:17022–1703021

    Article  Google Scholar 

  • Aprile A, De Bellis L (2020) Editorial for special issue “Heavy Metals Accumulation, Toxicity, and Detoxification in Plants,” vol 21. Multidisciplinary Digital Publishing Institute, Basil

    Google Scholar 

  • Arshad M, Ali S, Noman A, Ali Q, Rizwan M, Farid M, Irshad MK (2016) Phosphorus amendment decreased cadmium (Cd) uptake and ameliorates chlorophyll contents, gas exchange attributes, antioxidants, and mineral nutrients in wheat (Triticum aestivum L.) under Cd stress. Arch Agron Soil Sci 62(4):533–546

    Article  CAS  Google Scholar 

  • Asgher M, Khan MIR, Anjum NA, Khan NA (2015) Minimising toxicity of cadmium in plants—role of plant growth regulators. Protoplasma 252(2):399–413

    Article  CAS  PubMed  Google Scholar 

  • Aslam MM, Okal EJ, Waseem M, Jakada BH, Nyimbo WJ, Karanja JK (2021) Plant-microbial interactions confer tolerance to abiotic stress in plants. Engineering Tolerance in Crop Plants Against Abiotic Stress. CRC Press, Florida, pp 275–291

    Google Scholar 

  • Aslam M, Waseem M, Jakada BH, Okal EJ, Lei Z, Saqib HSA, Yuan W, Xu W, Zhang Q (2022) Mechanisms of abscisic acid-mediated drought stress responses in plants. Int J Mol Sci. https://doi.org/10.3390/ijms23031084

    Article  PubMed  PubMed Central  Google Scholar 

  • Aslam MM, Okal EJ, Idris AL, Qian Z, Xu W, Karanja JK, Wani SH, Yuan W (2022) Rhizosphere microbiomes can regulate plant drought tolerance. Pedosphere 32(1):61–74. https://doi.org/10.1016/S1002-0160(21)60061-9

    Article  Google Scholar 

  • Aslam MM, Pueyo JJ, Pang J, Yang J, Chen W, Chen H, Waseem M, Li Y, Zhang J, Xu W (2022) Root acid phosphatases and rhizobacteria synergistically enhance white lupin and rice phosphorus acquisition. Plant Physiology:kiac418. https://doi.org/10.1093/plphys/kiac418

    Article  Google Scholar 

  • Axelsen KB, Palmgren MG (2001) Inventory of the superfamily of P-type ion pumps in Arabidopsis. Plant Physiol 126(2):696–706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Badri DV, Quintana N, El Kassis EG, Kim HK, Choi YH, Sugiyama A, Verpoorte R, Martinoia E, Manter DK, Vivanco JM (2009) An ABC transporter mutation alters root exudation of phytochemicals that provoke an overhaul of natural soil microbiota. Plant Physiol 151(4):2006–2017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baldantoni D, Morra L, Zaccardelli M, Alfani A (2016) Cadmium accumulation in leaves of leafy vegetables. Ecotoxicol Environ Saf 123:89–94

    Article  CAS  PubMed  Google Scholar 

  • Baliardini C, Meyer C-L, Salis P, Saumitou-Laprade P, Verbruggen N (2015) CATION EXCHANGER1 cosegregates with cadmium tolerance in the metal hyperaccumulator Arabidopsis halleri and plays a role in limiting oxidative stress in Arabidopsis Spp. Plant Physiol 169(1):549–559

    Article  PubMed  PubMed Central  Google Scholar 

  • Bhuiyan MSU, Min SR, Jeong WJ, Sultana S, Choi KS, Lee Y, Liu JR (2011) Overexpression of AtATM3 in Brassica juncea confers enhanced heavy metal tolerance and accumulation. Plant Cell Tissue and Organ Culture (PCTOC) 107(1):69–77

    Article  CAS  Google Scholar 

  • Bigalke M, Ulrich A, Rehmus A, Keller A (2017) Accumulation of cadmium and uranium in arable soils in Switzerland. Environ Pollut 221:85–93

    Article  CAS  PubMed  Google Scholar 

  • Buendía-González L, Orozco-Villafuerte J, Cruz-Sosa F, Barrera-Díaz CE, Vernon-Carter EJ (2010) Prosopis laevigata a potential chromium (VI) and cadmium (II) hyperaccumulator desert plant. Bioresour Technol 101(15):5862–5867

    Article  PubMed  Google Scholar 

  • Cai H, Xie P, Zeng W, Zhai Z, Zhou W, Tang Z (2019) Root-specific expression of rice OsHMA3 reduces shoot cadmium accumulation in transgenic tobacco. Mol Breeding 39(3):1–11

    Article  Google Scholar 

  • Cailliatte R, Lapeyre B, Briat J-F, Mari S, Curie C (2009) The NRAMP6 metal transporter contributes to cadmium toxicity. Biochem J 422(2):217–228

    Article  CAS  PubMed  Google Scholar 

  • Chaffei C, Pageau K, Suzuki A, Gouia H, Ghorbel MH, Masclaux-Daubresse C (2004) Cadmium toxicity induced changes in nitrogen management in Lycopersicon esculentum leading to a metabolic safeguard through an amino acid storage strategy. Plant Cell Physiol 45(11):1681–1693

    Article  CAS  PubMed  Google Scholar 

  • Chao D-Y, Silva A, Baxter I, Huang YS, Nordborg M, Danku J, Lahner B, Yakubova E, Salt DE (2012) Genome-wide association studies identify heavy metal ATPase3 as the primary determinant of natural variation in leaf cadmium in Arabidopsis thaliana. PLoS Genet. https://doi.org/10.1371/journal.pgen.1002923

    Article  PubMed  PubMed Central  Google Scholar 

  • Chellaiah ER (2018) Cadmium (heavy metals) bioremediation by Pseudomonas aeruginosa: a minireview. Appl water Sci 8(6):1–10

    Article  CAS  Google Scholar 

  • Chen Q, Wu F-b (2020) Breeding for low cadmium accumulation cereals. J Zhejiang University-SCIENCE B 21(6):442–459

    Article  CAS  Google Scholar 

  • Chen X, Wang J, Shi Y, Zhao M, Chi G (2011) Effects of cadmium on growth and photosynthetic activities in pakchoi and mustard. Botanical Studies. 52(1):41–46

    CAS  Google Scholar 

  • Chen B, Luo S, Wu Y, Ye J, Wang Q, Xu X, Pan F, Khan KY, Feng Y, Yang X (2017) The effects of the endophytic bacterium Pseudomonas fluorescens Sasm05 and IAA on the plant growth and cadmium uptake of Sedum alfredii Hance. Front Microbiol 8:2538

    Article  PubMed  PubMed Central  Google Scholar 

  • Chugh L, Sawhney S (1996) Effect of cadmium on germination, amylases and rate of respiration of germinating pea seeds. Environ Pollut 92(1):1–5

    Article  CAS  PubMed  Google Scholar 

  • Ci D, Jiang D, Li S, Wollenweber B, Dai T, Cao W (2012) Identification of quantitative trait loci for cadmium tolerance and accumulation in wheat. Acta Physiol Plant 34(1):191–202

    Article  CAS  Google Scholar 

  • Coninx L, Smisdom N, Kohler A, Arnauts N, Ameloot M, Rineau F, Colpaert JV, Ruytinx J (2019) SlZRT2 Encodes a ZIP family Zn transporter with dual localization in the ectomycorrhizal fungus Suillus luteus. Front Microbiol 10:2251

    Article  PubMed  PubMed Central  Google Scholar 

  • Corso M, de la Torre VSG (2020) Biomolecular approaches to understanding metal tolerance and hyperaccumulation in plants. Metallomics 12(6):840–859

    Article  CAS  PubMed  Google Scholar 

  • Dary M, Chamber-Pérez MA, Palomares AJ, Pajuelo E (2010) “In situ” phytostabilisation of heavy metal polluted soils using Lupinus luteus inoculated with metal resistant plant-growth promoting rhizobacteria. J Hazard Mater 177(1–3):323–330

    Article  CAS  PubMed  Google Scholar 

  • Das N, Bhattacharya S, Maiti MK (2016) Enhanced cadmium accumulation and tolerance in transgenic tobacco overexpressing rice metal tolerance protein gene OsMTP1 is promising for phytoremediation. Plant Physiol Biochem 105:297–309

    Article  CAS  PubMed  Google Scholar 

  • Dias MC, Monteiro C, Moutinho-Pereira J, Correia C, Gonçalves B, Santos C (2013) Cadmium toxicity affects photosynthesis and plant growth at different levels. Acta Physiol Plant 35(4):1281–1289

    Article  CAS  Google Scholar 

  • Dobrikova AG, Apostolova EL, Hanć A, Yotsova E, Borisova P, Sperdouli I, Adamakis I-DS, Moustakas M (2021) Cadmium toxicity in Salvia sclarea L.: An integrative response of element uptake, oxidative stress markers, leaf structure and photosynthesis. Ecotoxicol Environ Saf 209:111851

    Article  CAS  PubMed  Google Scholar 

  • Duan G, Shao G, Tang Z, Chen H, Wang B, Tang Z, Yang Y, Liu Y, Zhao F-J (2017) Genotypic and environmental variations in grain cadmium and arsenic concentrations among a panel of high yielding rice cultivars. Rice 10(1):1–13

    Article  CAS  Google Scholar 

  • El Rasafi T, Oukarroum A, Haddioui A, Song H, Kwon EE, Bolan N, Tack FMG, Sebastian A, Prasad MNV, Rinklebe J (2022) Cadmium stress in plants: A critical review of the effects, mechanisms, and tolerance strategies. Crit Rev Environ Sci Technol 52(5):675–726

    Article  Google Scholar 

  • Feng J, Shi Q, Wang X, Wei M, Yang F, Xu H (2010) Silicon supplementation ameliorated the inhibition of photosynthesis and nitrate metabolism by cadmium (Cd) toxicity in Cucumis sativus L. Sci Hort 123(4):521–530

    Article  CAS  Google Scholar 

  • Feng S, Tan J, Zhang Y, Liang S, Xiang S, Wang H, Chai T (2017) Isolation and characterization of a novel cadmium-regulated yellow stripe-like transporter (SnYSL3) in Solanum nigrum. Plant Cell Rep 36(2):281–296

    Article  CAS  PubMed  Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48(12):909–930

    Article  CAS  PubMed  Google Scholar 

  • Gonçalves JF, Antes FG, Maldaner J, Pereira LB, Tabaldi LA, Rauber R, Rossato LV, Bisognin DA, Dressler VL, de Moraes Flores EM (2009) Cadmium and mineral nutrient accumulation in potato plantlets grown under cadmium stress in two different experimental culture conditions. Plant Physiol Biochem 47(9):814–821

    Article  PubMed  Google Scholar 

  • Grover M, Ali SZ, Sandhya V, Rasul A, Venkateswarlu B (2011) Role of microorganisms in adaptation of agriculture crops to abiotic stresses. World J Microbiol Biotechnol 27(5):1231–1240

    Article  Google Scholar 

  • Gul I, Manzoor M, Hashim N, Shah GM, Waani SPT, Shahid M, Antoniadis V, Rinklebe J, Arshad M (2021) Challenges in microbially and chelate-assisted phytoextraction of cadmium and lead–a review. Environ Pollut 287:117667

    Article  CAS  PubMed  Google Scholar 

  • Guo J, Chi J (2014) Effect of Cd-tolerant plant growth-promoting rhizobium on plant growth and Cd uptake by Lolium multiflorum Lam. and Glycine max (L.) Merr. in Cd-contaminated soil. Plant Soil 375(1–2):205–214

    Article  CAS  Google Scholar 

  • Haider FU, Coulter JA, Cheema SA, Farooq M, Wu J, Zhang R, Shuaijie G, Liqun C (2021a) Co-application of biochar and microorganisms improves soybean performance and remediate cadmium-contaminated soil. Ecotoxicol Environ Saf 214:112112

    Article  CAS  PubMed  Google Scholar 

  • Haider FU, Liqun C, Coulter JA, Cheema SA, Wu J, Zhang R, Wenjun M, Farooq M (2021b) Cadmium toxicity in plants: Impacts and remediation strategies. Ecotoxicol Environ Saf 211:111887

    Article  CAS  PubMed  Google Scholar 

  • Han X-q, Xiao X-y, Guo Z-h, Xie Y-h, Zhu H-w, Peng C, Liang Y-q (2018) Release of cadmium in contaminated paddy soil amended with NPK fertilizer and lime under water management. Ecotoxicol Environ Saf 159:38–45

    Article  CAS  PubMed  Google Scholar 

  • Hashem A, Abd Allah E, Alqarawi A, Al Huqail AA, Egamberdieva D, Wirth S (2016) Alleviation of cadmium stress in Solanum lycopersicum L. by arbuscular mycorrhizal fungi via induction of acquired systemic tolerance. J Biol Sci 23:272–2812

    CAS  Google Scholar 

  • He L, Yuan C, Li X, Li C, Li Y, Chen D, Zhang W, Zheng H, Gao J (2022) Metabolomics analysis reveals different mechanisms of cadmium response and functions of reduced glutathione in cadmium detoxification in the Chinese cabbage. Plant Growth Regul 98(2):289–305. doi:https://doi.org/10.1007/s10725-022-00860-7

    Article  CAS  Google Scholar 

  • Hediji H, Kharbech O, Massoud MB, Boukari N, Debez A, Chaibi W, Chaoui A, Djebali W (2021) Salicylic acid mitigates cadmium toxicity in bean (Phaseolus vulgaris L.) seedlings by modulating cellular redox status. Environ Exp Bot 186:104432

    Article  CAS  Google Scholar 

  • Hossein-Khannazer N, Azizi G, Eslami S, Alhassan Mohammed H, Fayyaz F, Hosseinzadeh R, Usman AB, Kamali AN, Mohammadi H, Jadidi-Niaragh F (2020) The effects of cadmium exposure in the induction of inflammation. Immunopharmacol Immunotoxicol 42(1):1–8

    Article  CAS  PubMed  Google Scholar 

  • Huang D, Gong X, Liu Y, Zeng G, Lai C, Bashir H, Zhou L, Wang D, Xu P, Cheng M (2017) Effects of calcium at toxic concentrations of cadmium in plants. Planta 245(5):863–873

    Article  CAS  PubMed  Google Scholar 

  • Hussain D, Haydon MJ, Wang Y, Wong E, Sherson SM, Young J, Camakaris J, Harper JF, Cobbett CS (2004) P-type ATPase heavy metal transporters with roles in essential zinc homeostasis in Arabidopsis. Plant Cell 16(5):1327–1339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hussain B, Ashraf MN, Shafeeq Ur R, Abbas A, Li J, Farooq M (2021) Cadmium stress in paddy fields: Effects of soil conditions and remediation strategies. Sci Total Environ 754:142188. https://doi.org/10.1016/j.scitotenv.2020.142188

    Article  CAS  PubMed  Google Scholar 

  • Huybrechts M, Hendrix S, Bertels J, Beemster GTS, Vandamme D, Cuypers A (2020) Spatial analysis of the rice leaf growth zone under controlled and cadmium-exposed conditions. Environ Exp Bot 177:104120

    Article  CAS  Google Scholar 

  • Ishikawa S (2020) Mechanisms of cadmium accumulation in rice grains and molecular breeding for its reduction. Soil Sci Plant Nutr 66(1):28–33

    Article  CAS  Google Scholar 

  • Ishikawa S, Ae N, Yano M (2005) Chromosomal regions with quantitative trait loci controlling cadmium concentration in brown rice (Oryza sativa). New Phytol 168(2):345–350

    Article  CAS  PubMed  Google Scholar 

  • Ishikawa S, Abe T, Kuramata M, Yamaguchi M, Ando T, Yamamoto T, Yano M (2010) A major quantitative trait locus for increasing cadmium-specific concentration in rice grain is located on the short arm of chromosome 7. J Exp Bot 61(3):923–934

    Article  CAS  PubMed  Google Scholar 

  • Ishikawa S, Ishimaru Y, Igura M, Kuramata M, Abe T, Senoura T, Hase Y, Arao T, Nishizawa NK, Nakanishi H (2012) Ion-beam irradiation, gene identification, and marker-assisted breeding in the development of low-cadmium rice. Proc Natl Acad Sci 109(47):19166–19171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ishikawa S, Abe T, Kuramata M, Hayashi S (2019) Development of Low-Cadmium-Accumulating Rice. Cadmium Toxicity. Springer, Cham, pp 139–150

    Google Scholar 

  • Ishimaru Y, Takahashi R, Bashir K, Shimo H, Senoura T, Sugimoto K, Ono K, Yano M, Ishikawa S, Arao T (2012) Characterizing the role of rice NRAMP5 in manganese, iron and cadmium transport. Sci Rep 2(1):1–8

    Article  Google Scholar 

  • Ismael MA, Elyamine AM, Moussa MG, Cai M, Zhao X, Hu C (2019) Cadmium in plants: uptake, toxicity, and its interactions with selenium fertilizers. Metallomics 11(2):255–277

    Article  CAS  PubMed  Google Scholar 

  • Jahromi MA, Jamshidi-Zanjani A, Darban AK (2020) Heavy metal pollution and human health risk assessment for exposure to surface soil of mining area: a comprehensive study. Environ Earth Sci 79(14):1–18

    Google Scholar 

  • Javed MT, Tanwir K, Akram MS, Shahid M, Niazi NK, Lindberg S (2019) Phytoremediation of cadmium-polluted water/sediment by aquatic macrophytes: role of plant-induced pH changes, Cadmium Toxicity and Tolerance in Plants. Elsevier, Cham, pp 495–529

    Google Scholar 

  • Jinadasa N, Collins D, Holford P, Milham PJ, Conroy JP (2016) Reactions to cadmium stress in a cadmium-tolerant variety of cabbage (Brassica oleracea L.): is cadmium tolerance necessarily desirable in food crops? Environ Sci Pollut Res 23(6):5296–5306

    Article  CAS  Google Scholar 

  • Jing X-Q, Zhou M-R, Nie X-M, Zhang L, Shi P-T, Shalmani A, Miao H, Li W-Q, Liu W-T, Chen K-M (2021) OsGSTU6 Contributes to Cadmium Stress Tolerance in Rice by Involving in Intracellular ROS Homeostasis. J Plant Growth Regul 40(3):945–961. https://doi.org/10.1007/s00344-020-10148-7

    Article  CAS  Google Scholar 

  • Kamran MA, Syed JH, Eqani SAMAS, Munis MFH, Chaudhary HJ (2015) Effect of plant growth-promoting rhizobacteria inoculation on cadmium (Cd) uptake by Eruca sativa. Environ Sci Pollut Res 22(12):9275–9283

    Article  CAS  Google Scholar 

  • Kapoor S, Khanna PK, Katyal P (2009) Effect of supplementation of wheat straw on growth and lignocellulolytic enzyme potential of Lentinus edodes. World J Agric Sci 5(3):328–331

    CAS  Google Scholar 

  • Kapoor D, Singh MP, Kaur S, Bhardwaj R, Zheng B, Sharma A (2019) Modulation of the functional components of growth, photosynthesis, and anti-oxidant stress markers in cadmium exposed Brassica juncea L. Plants 8(8):260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kashiwagi T, Shindoh K, Hirotsu N, Ishimaru K (2009) Evidence for separate translocation pathways in determining cadmium accumulation in grain and aerial plant parts in rice. BMC Plant Biol 9(1):1–10

    Article  Google Scholar 

  • Kastori R, Petrović M, Petrović N (1992) Effect of excess lead, cadmium, copper, and zinc on water relations in sunflower. J Plant Nutr 15(11):2427–2439

    Article  CAS  Google Scholar 

  • Khan N, Samiullah, Singh S, Nazar R (2007) Activities of antioxidative enzymes, sulphur assimilation, photosynthetic activity and growth of wheat (Triticum aestivum) cultivars differing in yield potential under cadmium stress. J Agron Crop Sci 193(6):435–444

    Article  CAS  Google Scholar 

  • Khan AL, Waqas M, Kang S-M, Al-Harrasi A, Hussain J, Al-Rawahi A, Al-Khiziri S, Ullah I, Ali L, Jung H-Y (2014) Bacterial endophyte Sphingomonas sp. LK11 produces gibberellins and IAA and promotes tomato plant growth. J Microbiol 52(8):689–695

    Article  CAS  PubMed  Google Scholar 

  • Khan A, Khan S, Alam M, Khan MA, Aamir M, Qamar Z, Rehman ZU, Perveen S (2016) Toxic metal interactions affect the bioaccumulation and dietary intake of macro-and micro-nutrients. Chemosphere 146:121–128

    Article  CAS  PubMed  Google Scholar 

  • Kim D, Gustin JL, Lahner B, Persans MW, Baek D, Yun DJ, Salt DE (2004) The plant CDF family member TgMTP1 from the Ni/Zn hyperaccumulator Thlaspi goesingense acts to enhance efflux of Zn at the plasma membrane when expressed in Saccharomyces cerevisiae. Plant J 39(2):237–251

    Article  CAS  PubMed  Google Scholar 

  • Kim HS, Kim YJ, Seo YR (2015) An Overview of Carcinogenic Heavy Metal: Molecular Toxicity Mechanism and Prevention. J cancer Prev 20(4):232–240. https://doi.org/10.15430/jcp.2015.20.4.232

    Article  PubMed  PubMed Central  Google Scholar 

  • Knox RE, Pozniak CJ, Clarke FR, Clarke JM, Houshmand S, Singh AK (2009) Chromosomal location of the cadmium uptake gene (Cdu1) in durum wheat. Genome 52(9):741–747

    Article  CAS  PubMed  Google Scholar 

  • Koike S, Inoue H, Mizuno D, Takahashi M, Nakanishi H, Mori S, Nishizawa NK (2004) OsYSL2 is a rice metal-nicotianamine transporter that is regulated by iron and expressed in the phloem. Plant J 39(3):415–424

    Article  CAS  PubMed  Google Scholar 

  • Korenkov V, Hirschi K, Crutchfield JD, Wagner GJ (2007) Enhancing tonoplast Cd/H antiport activity increases Cd, Zn, and Mn tolerance, and impacts root/shoot Cd partitioning in Nicotiana tabacum L. Planta 226(6):1379–1387

    Article  CAS  PubMed  Google Scholar 

  • Korenkov V, King B, Hirschi K, Wagner GJ (2009) Root-selective expression of AtCAX4 and AtCAX2 results in reduced lamina cadmium in field‐grown Nicotiana tabacum L. Plant Biotechnol J 7(3):219–226

    Article  CAS  PubMed  Google Scholar 

  • Kotrba P, Najmanova J, Macek T, Ruml T, Mackova M (2009) Genetically modified plants in phytoremediation of heavy metal and metalloid soil and sediment pollution. Biotechnol Adv 27(6):799–810

    Article  CAS  PubMed  Google Scholar 

  • Kubier A, Wilkin RT, Pichler T (2019) Cadmium in soils and groundwater: a review. Appl Geochem 108:104388

    Article  CAS  Google Scholar 

  • Kubota H, Takenaka C (2003) Field Note: Arabis gemmifera is a hyperaccumulator of Cd and Zn. Int J Phytoremediation 5(3):197–201

    Article  CAS  PubMed  Google Scholar 

  • Kumar A, Subrahmanyam G, Mondal R, Cabral-Pinto MMS, Shabnam AA, Jigyasu DK, Malyan SK, Fagodiya RK, Khan SA, Kumar A, Yu Z-G (2021) Bio-remediation approaches for alleviation of cadmium contamination in natural resources. Chemosphere 268:128855. https://doi.org/10.1016/j.chemosphere.2020.128855

    Article  CAS  PubMed  Google Scholar 

  • Kumar Yadav K, Gupta N, Kumar A, Reece LM, Singh N, Rezania S, Ahmad Khan S (2018) Mechanistic understanding and holistic approach of phytoremediation: A review on application and future prospects. Ecol Eng 120:274–298. https://doi.org/10.1016/j.ecoleng.2018.05.039

    Article  Google Scholar 

  • Lata S, Kaur HP, Mishra T (2019) Cadmium bioremediation: a review. Int J Pharm Sci Res 10(9):4120–4128

    CAS  Google Scholar 

  • Lee S, Kim Y-Y, Lee Y, An G (2007) Rice P1B-type heavy-metal ATPase, OsHMA9, is a metal efflux protein. Plant Physiol 145(3):831–842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee S, Kim SA, Lee J, Guerinot ML, An G (2010) Zinc deficiency-inducible OsZIP8 encodes a plasma membrane-localized zinc transporter in rice. Mol Cells 29(6):551–558

    Article  CAS  PubMed  Google Scholar 

  • Lekeux G, Crowet J-M, Nouet C, Joris M, Jadoul A, Bosman B, Carnol M, Motte P, Lins L, Galleni M (2019) Homology modeling and in vivo functional characterization of the zinc permeation pathway in a heavy metal P-type ATPase. J Exp Bot 70(1):329–341

    Article  CAS  PubMed  Google Scholar 

  • Li X, Zhou Q, Sun X, Ren W (2016) Effects of cadmium on uptake and translocation of nutrient elements in different welsh onion (Allium fistulosum L.) cultivars. Food Chem 194:101–110

    Article  CAS  PubMed  Google Scholar 

  • Li J, Wang Y, Zheng L, Li Y, Zhou X, Li J, Gu D, Xu E, Lu Y, Chen X (2019a) The intracellular transporter AtNRAMP6 is involved in Fe homeostasis in Arabidopsis. Front Plant Sci 10:1124

    Article  PubMed  PubMed Central  Google Scholar 

  • Li Y, Liang X, Huang Q, Xu Y, Yang F (2019b) Inhibition of Cd accumulation in grains of wheat and rice under rotation mode using composite silicate amendment. RSC Adv 9(61):35539–35548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu C, Guo J, Cui Y, Lü T, Zhang X, Shi G (2011) Effects of cadmium and salicylic acid on growth, spectral reflectance and photosynthesis of castor bean seedlings. Plant Soil 344(1–2):131–141

    Article  CAS  Google Scholar 

  • Liu H, Zhao H, Wu L, Liu A, Zhao FJ, Xu W (2017) Heavy metal ATPase 3 (HMA3) confers cadmium hypertolerance on the cadmium/zinc hyperaccumulator Sedum plumbizincicola. New Phytol 215(2):687–698

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Hou H, Zhao L, Sun Z, Lu Y, Li H (2019a) Mitigation of Cd accumulation in rice from Cd-contaminated paddy soil by foliar dressing of S and P. Sci Total Environ 690:321–328

    Article  CAS  PubMed  Google Scholar 

  • Liu W, Pan X, Li Y, Duan Y, Min J, Liu S, Liu L, Sheng X, Li X (2019b) Identification of QTLs and validation of qCd-2 associated with grain cadmium concentrations in rice. Rice Sci 26(1):42–49

    Article  CAS  Google Scholar 

  • Lu C, Zhang L, Tang Z, Huang X-Y, Ma JF, Zhao F-J (2019) Producing cadmium-free Indica rice by overexpressing OsHMA3. Environ Int 126:619–626

    Article  CAS  PubMed  Google Scholar 

  • Lundberg DS, Teixeira PJPL (2018) Root-exuded coumarin shapes the root microbiome. Proc Natl Acad Sci 115(22):5629–5631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luo J-S, Zhang Z (2021) Mechanisms of cadmium phytoremediation and detoxification in plants.  Crop J 9:521–529

    Article  Google Scholar 

  • Luo J-S, Huang J, Zeng D-L, Peng J-S, Zhang G-B, Ma H-L, Guan Y, Yi H-Y, Fu Y-L, Han B (2018) A defensin-like protein drives cadmium efflux and allocation in rice. Nat Commun 9(1):1–9

    Article  Google Scholar 

  • Lux A, Martinka M, Vaculík M, White PJ (2011a) Root responses to cadmium in the rhizosphere: a review. J Exp Bot 62(1):21–37

    Article  CAS  PubMed  Google Scholar 

  • Lux A, Vaculík M, Martinka M, Lišková D, Kulkarni MG, Stirk WA, Van Staden J (2011b) Cadmium induces hypodermal periderm formation in the roots of the monocotyledonous medicinal plant Merwilla plumbea. Ann Botany 107(2):285–292

    Article  CAS  Google Scholar 

  • Ma Y, Zhang C, Oliveira RS, Freitas H, Luo Y (2016) Bioaugmentation with endophytic bacterium E6S homologous to Achromobacter piechaudii enhances metal rhizoaccumulation in host Sedum plumbizincicola. Front Plant Sci 7:75

    Article  PubMed  PubMed Central  Google Scholar 

  • Martins LL, Mourato MP, Baptista S, Reis R, Carvalheiro F, Almeida AM, Fevereiro P, Cuypers A (2014) Response to oxidative stress induced by cadmium and copper in tobacco plants (Nicotiana tabacum) engineered with the trehalose-6-phosphate synthase gene (AtTPS1). Acta Physiol Plant 36(3):755–765

    Article  CAS  Google Scholar 

  • Matayoshi CL, Pena LB, Arbona V, Gómez-Cadenas A, Gallego SM (2022) Biochemical and hormonal changes associated with root growth restriction under cadmium stress during maize (Zea mays L.) pre-emergence. Plant Growth Regul 96(2):269–281. https://doi.org/10.1007/s10725-021-00774-w

    Article  CAS  Google Scholar 

  • Mendoza-Cózatl DG, Jobe TO, Hauser F, Schroeder JI (2011) Long-distance transport, vacuolar sequestration, tolerance, and transcriptional responses induced by cadmium and arsenic. Curr Opin Plant Biol 14(5):554–562

    Article  PubMed  PubMed Central  Google Scholar 

  • Meng H, Hua S, Shamsi IH, Jilani G, Li Y, Jiang L (2009) Cadmium-induced stress on the seed germination and seedling growth of Brassica napus L., and its alleviation through exogenous plant growth regulators. Plant Growth Regul 58(1):47–59

    Article  CAS  Google Scholar 

  • Mikhailenko AV, Ruban DA, Ermolaev VA, van Loon AJ (2020) Cadmium pollution in the tourism environment: a literature review. Geosciences 10(6):242

    Article  CAS  Google Scholar 

  • Miller G, Suzuki N, Ciftci-Yilmaz S, Mittler R (2010) Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant Cell Environ 33(4):453–467

    Article  CAS  PubMed  Google Scholar 

  • Miyadate H, Adachi S, Hiraizumi A, Tezuka K, Nakazawa N, Kawamoto T, Katou K, Kodama I, Sakurai K, Takahashi H (2011) OsHMA3, a P1B-type of ATPase affects root‐to‐shoot cadmium translocation in rice by mediating efflux into vacuoles. New Phytol 189(1):190–199

    Article  CAS  PubMed  Google Scholar 

  • Monteiro M, Santos C, Soares A, Mann R (2009) Assessment of biomarkers of cadmium stress in lettuce. Ecotoxicol Environ Saf 72(3):811–818

    Article  CAS  PubMed  Google Scholar 

  • Morel M, Crouzet J, Gravot A, Auroy P, Leonhardt N, Vavasseur A, Richaud P (2009) AtHMA3, a P1B-ATPase allowing Cd/Zn/co/Pb vacuolar storage in Arabidopsis. Plant Physiol 149(2):894–904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murata Y, Ma JF, Yamaji N, Ueno D, Nomoto K, Iwashita T (2006) A specific transporter for iron (III)–phytosiderophore in barley roots. Plant J 46(4):563–572

    Article  CAS  PubMed  Google Scholar 

  • Naeem A, Zafar M, Khalid H, Zia-ur-Rehman M, Ahmad Z, Ayub MA, Qayyum MF (2019) Cadmium-induced imbalance in nutrient and water uptake by plants. Cadmium Toxicity and Tolerance in Plants. Elsevier, Amsterdam, pp 299–326

    Google Scholar 

  • Nakanishi H, Ogawa I, Ishimaru Y, Mori S, Nishizawa NK (2006) Iron deficiency enhances cadmium uptake and translocation mediated by the Fe2 + transporters OsIRT1 and OsIRT2 in rice. Soil Sci Plant Nutr 52(4):464–469

    Article  CAS  Google Scholar 

  • Nazar R, Iqbal N, Masood A, Khan MIR, Syeed S, Khan NA (2012) Cadmium toxicity in plants and role of mineral nutrients in its alleviation. Am J Plant Sci. https://doi.org/10.4236/ajps.2012.310178

    Article  Google Scholar 

  • Pan X, Li Y, Liu W, Liu S, Min J, Xiong H, Dong Z, Duan Y, Yu Y, Li X (2020) QTL mapping and candidate gene analysis of cadmium accumulation in polished rice by genome-wide association study. Sci Rep 10(1):1–11

    Article  Google Scholar 

  • Peng K, Luo C, You W, Lian C, Li X, Shen Z (2008) Manganese uptake and interactions with cadmium in the hyperaccumulator—Phytolacca Americana L. J Hazard Mater 154(1–3):674–681

    Article  CAS  PubMed  Google Scholar 

  • Pereira TS, Pereira TS, de Carvalho Souza CLF, Lima EJA, Batista BL, da Silva Lobato AK (2018) Silicon deposition in roots minimizes the cadmium accumulation and oxidative stress in leaves of cowpea plants. Physiol Mol Biology Plants 24(1):99–114

    Article  CAS  Google Scholar 

  • Rabêlo FHS, Gaziola SA, Rossi ML, Silveira NM, Wójcik M, Bajguz A, Piotrowska-Niczyporuk A, Lavres J, Linhares FS, Azevedo RA (2020) Unravelling the mechanisms controlling Cd accumulation and Cd-tolerance in Brachiaria decumbens and Panicum maximum under summer and winter weather conditions. Physiologia Plantarum. 173:20–44

    PubMed  Google Scholar 

  • Redjala T, Zelko I, Sterckeman T, Legué V, Lux A (2011) Relationship between root structure and root cadmium uptake in maize. Environ Exp Bot 71(2):241–248

    Article  CAS  Google Scholar 

  • Reeves RD, van der Ent A, Echevarria G, Isnard S, Baker AJM (2021) Global distribution and ecology of hyperaccumulator plants. agromining: farming for metals. Springer, Cham, pp 133–154

    Book  Google Scholar 

  • Ren X-M, Guo S-J, Tian W, Chen Y, Han H, Chen E, Li B-L, Li Y-Y, Chen Z-J (2019) Effects of plant growth-promoting bacteria (PGPB) inoculation on the growth, antioxidant activity, Cu uptake, and bacterial community structure of rape (Brassica napus L.) grown in Cu-contaminated agricultural soil. Front Microbiol 10:1455

    Article  PubMed  PubMed Central  Google Scholar 

  • Riaz M, Kamran M, Rizwan M, Ali S, Parveen A, Malik Z, Wang X (2021) Cadmium uptake and translocation: synergetic roles of selenium and silicon in Cd detoxification for the production of low Cd crops: a critical review. Chemosphere 273:129690

    Article  CAS  PubMed  Google Scholar 

  • Rizwan M, Meunier J-D, Davidian J-C, Pokrovsky O, Bovet N, Keller C (2016) Silicon alleviates Cd stress of wheat seedlings (Triticum turgidum L. cv. Claudio) grown in hydroponics. Environ Sci Pollut Res 23(2):1414–1427

    Article  CAS  Google Scholar 

  • Ryuichi T, Yasuhiro I, Takeshi S, Hugo S, Satoru I, Tomohito A, Hiromi N (2011) Nishizawa Naoko K. The OsNRAMP1 iron transporter is involved in Cd accumulation in rice. J Exp Bot 62(14):4843–4850

    Article  Google Scholar 

  • Sandalio L, Dalurzo H, Gomez M, Romero-Puertas M, Del Rio L (2001) Cadmium‐induced changes in the growth and oxidative metabolism of pea plants. J Exp Bot 52(364):2115–2126

    Article  CAS  PubMed  Google Scholar 

  • Saravanan A, Jeevanantham S, Narayanan VA, Kumar PS, Yaashikaa PR, Muthu CMM (2020) Rhizoremediation–a promising tool for the removal of soil contaminants: a review. J Environ Chem Eng 8(2):103543

    Article  CAS  Google Scholar 

  • Sasaki A, Yamaji N, Yokosho K, Ma JF (2012) Nramp5 is a major transporter responsible for manganese and cadmium uptake in rice. Plant Cell 24(5):2155–2167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sato H, Shirasawa S, Maeda H, Nakagomi K, Kaji R, Ohta H, Yamaguchi M, Nishio T (2011) Analysis of QTL for lowering cadmium concentration in rice grains from ‘LAC23’. Breed Sci 61(2):196–200

    Article  CAS  Google Scholar 

  • Srivastava RK, Pandey P, Rajpoot R, Rani A, Dubey R (2014) Cadmium and lead interactive effects on oxidative stress and antioxidative responses in rice seedlings. Protoplasma 251(5):1047–1065

    Article  CAS  PubMed  Google Scholar 

  • Chloe Stephenson, Colin R, Black (2014) One step forward, two steps back: the evolution of phytoremediation into commercial technologies. Bioscience Horizons: The Int J of Stud Res 7. hzu009. https://doi.org/10.1093/biohorizons/hzu009

  • Sui F-Q, Chang J-D, Tang Z, Liu W-J, Huang X-Y, Zhao F-J (2018) Nramp5 expression and functionality likely explain higher cadmium uptake in rice than in wheat and maize. Plant Soil 433(1):377–389

    Article  CAS  Google Scholar 

  • Suman J, Uhlik O, Viktorova J, Macek T (2018) Phytoextraction of heavy metals: a promising tool for clean-up of polluted environment? Front Plant Sci 9:1476

    Article  PubMed  PubMed Central  Google Scholar 

  • Sun SK, Chen Y, Che J, Konishi N, Tang Z, Miller AJ, Ma JF, Zhao FJ (2018) Decreasing arsenic accumulation in rice by overexpressing Os NIP 1; 1 and Os NIP 3; 3 through disrupting arsenite radial transport in roots. New Phytol 219(2):641–653

    Article  CAS  PubMed  Google Scholar 

  • Sun S, Zhou X, Cui X, Liu C, Fan Y, McBride MB, Li Y, Li Z, Zhuang P (2020) Exogenous plant growth regulators improved phytoextraction efficiency by Amaranths hypochondriacus L. in cadmium contaminated soil. Plant Growth Regul 90(1):29–40. https://doi.org/10.1007/s10725-019-00548-5

    Article  CAS  Google Scholar 

  • Takahashi R, Ishimaru Y, Nakanishi H, Nishizawa NK (2011a) Role of the iron transporter OsNRAMP1 in cadmium uptake and accumulation in rice. Plant Signal Behav 6(11):1813–1816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takahashi R, Ishimaru Y, Senoura T, Shimo H, Ishikawa S, Arao T, Nakanishi H, Nishizawa NK (2011b) The OsNRAMP1 iron transporter is involved in Cd accumulation in rice. J Exp Bot 62(14):4843–4850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takahashi R, Ishimaru Y, Shimo H, Bashir K, Senoura T, Sugimoto K, Ono K, Suzui N, Kawachi N, Ishii S (2014) From laboratory to field: OsNRAMP5-knockdown rice is a promising candidate for Cd phytoremediation in paddy fields. PLoS ONE 9(6):e98816

    Article  PubMed  PubMed Central  Google Scholar 

  • Tan Y, Sun L, Song Q, Mao D, Zhou J, Jiang Y, Wang J, Fan T, Zhu Q, Huang D (2020) Genetic architecture of subspecies divergence in trace mineral accumulation and elemental correlations in the rice grain. Theor Appl Genet 133(2):529–545

    Article  CAS  PubMed  Google Scholar 

  • Taylor M, Kim N, Smidt G, Busby C, McNally S, Robinson B, Kratz S, Schnug E (2016) Trace element contaminants and radioactivity from phosphate fertiliser. phosphorus in agriculture: 100% zero. Springer, Berlin, pp 231–266

    Google Scholar 

  • Tezuka K, Miyadate H, Katou K, Kodama I, Matsumoto S, Kawamoto T, Masaki S, Satoh H, Yamaguchi M, Sakurai K (2010) A single recessive gene controls cadmium translocation in the cadmium hyperaccumulating rice cultivar Cho-Ko-Koku. Theor Appl Genet 120(6):1175–1182

    Article  CAS  PubMed  Google Scholar 

  • Thomine S, Wang R, Ward JM, Crawford NM, Schroeder JI (2000) Cadmium and iron transport by members of a plant metal transporter family in Arabidopsis with homology to Nramp genes. Proc Natl Acad Sci 97(9):4991–4996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomine S, Lelièvre F, Debarbieux E, Schroeder JI, Barbier-Brygoo H (2003) AtNRAMP3, a multispecific vacuolar metal transporter involved in plant responses to iron deficiency. Plant J 34(5):685–695

    Article  CAS  PubMed  Google Scholar 

  • Touzout N, Mehallah H, Moralent R, Nemmiche S, Benkhelifa M (2021) Co-contamination of deltamethrin and cadmium induce oxidative stress in tomato plants (Solanum lycopersicum L.). Acta Physiol Plant 43(6):1–10

    Article  Google Scholar 

  • Tran TA, Popova LP (2013) Functions and toxicity of cadmium in plants: recent advances and future prospects. Turkish J Bot 37(1):1–13

    CAS  Google Scholar 

  • Ueno D, Kono I, Yokosho K, Ando T, Yano M, Ma JF (2009) A major quantitative trait locus controlling cadmium translocation in rice (Oryza sativa). New Phytol 182(3):644–653

    Article  CAS  PubMed  Google Scholar 

  • Ueno D, Koyama E, Kono I, Ando T, Yano M, Ma JF (2009b) Identification of a novel major quantitative trait locus controlling distribution of Cd between roots and shoots in rice. Plant Cell Physiol 50(12):2223–2233

    Article  CAS  PubMed  Google Scholar 

  • Ueno D, Yamaji N, Kono I, Huang CF, Ando T, Yano M, Ma JF (2010) Gene limiting cadmium accumulation in rice. Proc Natl Acad Sci 107(38):16500–16505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uraguchi S, Kamiya T, Sakamoto T, Kasai K, Sato Y, Nagamura Y, Yoshida A, Kyozuka J, Ishikawa S, Fujiwara T (2011) Low-affinity cation transporter (OsLCT1) regulates cadmium transport into rice grains. Proc Natl Acad Sci 108(52):20959–20964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uraguchi S, Kamiya T, Clemens S, Fujiwara T (2014) Characterization of OsLCT1, a cadmium transporter from indica rice (Oryza sativa). Physiol Plant 151(3):339–347

    Article  CAS  PubMed  Google Scholar 

  • Vassilev A, Lidon FC, Matos MdC, Ramalho JC, Yordanov I (2002) Photosynthetic performance and content of some nutrients in cadmium-and copper-treated barley plants. J Plant Nutr 25(11):2343–2360

    Article  CAS  Google Scholar 

  • Wang Z, Sun Y, Yao W, Ba Q, Wang H (2021) Effects of cadmium exposure on the immune system and immunoregulation. Front Immunol. https://doi.org/10.3389/fimmu.2021.695484

    Article  PubMed  PubMed Central  Google Scholar 

  • Wiebe K, Harris NS, Faris JD, Clarke JM, Knox RE, Taylor GJ, Pozniak CJ (2010) Targeted mapping of Cdu1, a major locus regulating grain cadmium concentration in durum wheat (Triticum turgidum L. var durum). Theor Appl Genet 121(6):1047–1058

    Article  CAS  PubMed  Google Scholar 

  • Wu H, Chen C, Du J, Liu H, Cui Y, Zhang Y, He Y, Wang Y, Chu C, Feng Z (2012) Co-overexpression FIT with AtbHLH38 or AtbHLH39 in Arabidopsis-enhanced cadmium tolerance via increased cadmium sequestration in roots and improved iron homeostasis of shoots. Plant Physiol 158(2):790–800

    Article  CAS  PubMed  Google Scholar 

  • Wu D, Yamaji N, Yamane M, Kashino-Fujii M, Sato K, Feng Ma J (2016a) The HvNramp5 transporter mediates uptake of cadmium and manganese, but not iron. Plant Physiol 172(3):1899–1910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu Z, Wang F, Liu S, Du Y, Li F, Du R, Wen D, Zhao J (2016b) Comparative responses to silicon and selenium in relation to cadmium uptake, compartmentation in roots, and xylem transport in flowering Chinese cabbage (Brassica campestris L. ssp. chinensis var. utilis) under cadmium stress. Environ Exp Bot 131:173–180

    Article  CAS  Google Scholar 

  • Wu Y, Ma L, Liu Q, Vestergård M, Topalovic O, Wang Q, Zhou Q, Huang L, Yang X, Feng Y (2020) The plant-growth promoting bacteria promote cadmium uptake by inducing a hormonal crosstalk and lateral root formation in a hyperaccumulator plant Sedum alfredii. J Hazard Mater 395:122661

    Article  CAS  PubMed  Google Scholar 

  • Wu B, Zeng Z, Wu X, Li Y, Wang F, Yang J, Li X (2022) Jasmonic acid negatively regulation of root growth in Japonica rice (Oryza sativa L.) under cadmium treatment. Plant Growth Regul. https://doi.org/10.1007/s10725-022-00897-8

    Article  Google Scholar 

  • Xiong YH, Yang XE, Ye ZQ, He ZL (2004) Characteristics of cadmium uptake and accumulation by two contrasting ecotypes of Sedum alfredii Hance. J Environ Sci Health Part A 39(11–12):2925–2940

    Article  CAS  Google Scholar 

  • Xu W, Shi W, Liu F, Ueda A, Takabe T (2008) Enhanced zinc and cadmium tolerance and accumulation in transgenic Arabidopsis plants constitutively overexpressing a barley gene (HvAPX1) that encodes a peroxisomal ascorbate peroxidase. Botany 86(6):567–575

    Article  CAS  Google Scholar 

  • Yadav L, Choudhary S, Keshwa G, Sharma O (2013) Garden cress (Lepidium sativum) growth, productivity and nutrient uptake under different sowing dates, row spacing and nitrogen levels. Ind J Agron 58(1):114–118

    Google Scholar 

  • Yamaji N, Sasaki A, Xia JX, Yokosho K, Ma JF (2013a) A node-based switch for preferential distribution of manganese in rice. Nat Commun 4(1):1–11

    Article  Google Scholar 

  • Yamaji N, Xia J, Mitani-Ueno N, Yokosho K, Feng Ma J (2013b) Preferential delivery of zinc to developing tissues in rice is mediated by P-type heavy metal ATPase OsHMA2. Plant Physiol 162(2):927–939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan Y-F, Lestari P, Lee K-J, Kim MY, Lee S-H, Lee B-W (2013) Identification of quantitative trait loci for cadmium accumulation and distribution in rice (Oryza sativa). Genome 56(4):227–232

    Article  CAS  PubMed  Google Scholar 

  • Yan H, Xu W, Xie J, Gao Y, Wu L, Sun L, Feng L, Chen X, Zhang T, Dai C (2019) Variation of a major facilitator superfamily gene contributes to differential cadmium accumulation between rice subspecies. Nat Commun 10(1):1–12

    Google Scholar 

  • Yang XE, Long XX, Ye HB, He ZL, Calvert DV, Stoffella PJ (2004) Cadmium tolerance and hyperaccumulation in a new Zn-hyperaccumulating plant species (Sedum alfredii Hance). Plant Soil 259(1):181–189

    Article  CAS  Google Scholar 

  • Yang X, Feng Y, He Z, Stoffella PJ (2005) Molecular mechanisms of heavy metal hyperaccumulation and phytoremediation. J Trace Elem Med Biol 18(4):339–353

    Article  CAS  PubMed  Google Scholar 

  • Yang J, Kloepper JW, Ryu C-M (2009) Rhizosphere bacteria help plants tolerate abiotic stress. Trends Plant Sci 14(1):1–4

    Article  CAS  PubMed  Google Scholar 

  • Yang M, Lu K, Zhao F-J, Xie W, Ramakrishna P, Wang G, Du Q, Liang L, Sun C, Zhao H (2018) Genome-wide association studies reveal the genetic basis of ionomic variation in rice. Plant Cell 30(11):2720–2740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ye P, Wang M, Zhang T, Liu X, Jiang H, Sun Y, Cheng X, Yan Q (2020) Enhanced Cadmium Accumulation and Tolerance in Transgenic Hairy Roots of Solanum nigrum L. Expressing Iron-Regulated Transporter Gene IRT1. Life 10(12):324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoshihara T, Hodoshima H, Miyano Y, Shoji K, Shimada H, Goto F (2006) Cadmium inducible Fe deficiency responses observed from macro and molecular views in tobacco plants. Plant Cell Rep 25(4):365–373

    Article  CAS  PubMed  Google Scholar 

  • Yu F, Yao Y, Feng J, Wang X, Ma J, Liu K, Li Y (2021) Enterobacter sp. FM-1 inoculation influenced heavy metal-induced oxidative stress in pakchoi (Brassica campestris L. ssp. Chinensis Makino) and water spinach (Ipomoea aquatic F.) cultivated in cadmium and lead co-contaminated soils. Plant Soil 459(1):155–171

    Article  CAS  Google Scholar 

  • Zaid A, Mohammad F, Fariduddin Q (2020) Plant growth regulators improve growth, photosynthesis, mineral nutrient and antioxidant system under cadmium stress in menthol mint (Mentha arvensis L.). Physiol Mol Biology Plants 26(1):25–39

    Article  CAS  Google Scholar 

  • Zeeshan N, Nasir AA, Haider FU, Naveed K, Naseer S, Murtaza G (2021) Risk assessment of trace metals deposition and growth of Abelmochus esculentus L. on industrially polluted soils of Faisalabad, Pakistan. Pak J Agric Sci 58:881–889

    Google Scholar 

  • Zhang X, Zhang G, Guo L, Wang H, Zeng D, Dong G, Qian Q, Xue D (2011) Identification of quantitative trait loci for Cd and Zn concentrations of brown rice grown in Cd-polluted soils. Euphytica 180(2):173–179

    Article  CAS  Google Scholar 

  • Zhang M, Pinson SRM, Tarpley L, Huang X-Y, Lahner B, Yakubova E, Baxter I, Guerinot ML, Salt DE (2014) Mapping and validation of quantitative trait loci associated with concentrations of 16 elements in unmilled rice grain. Theor Appl Genet 127(1):137–165

    Article  CAS  PubMed  Google Scholar 

  • Zhang A, Bian R, Li L, Wang X, Zhao Y, Hussain Q, Pan G (2015) Enhanced rice production but greatly reduced carbon emission following biochar amendment in a metal-polluted rice paddy. Environ Sci Pollut Res 22(23):18977–18986

    Article  CAS  Google Scholar 

  • Zhang M, Zhang J, Lu LL, Zhu ZQ, Yang XE (2016) Functional analysis of CAX2-like transporters isolated from two ecotypes of Sedum alfredii. Biol Plant 60(1):37–47

    Article  CAS  Google Scholar 

  • Zhang K, Zhang Y, Sun J, Meng J, Tao J (2021) Deterioration of orthodox seeds during ageing: Influencing factors, physiological alterations and the role of reactive oxygen species. Plant Physiol Biochem 158:475–485

    Article  CAS  PubMed  Google Scholar 

  • Zhi J, Liu X, Yin P, Yang R, Liu J, Xu J (2020) Overexpression of the metallothionein gene PaMT3-1 from Phytolacca americana enhances plant tolerance to cadmium. Plant Cell Tissue and Organ Culture (PCTOC) 143(1):211–218

    Article  CAS  Google Scholar 

  • Zhou J, Zhang C, Du B, Cui H, Fan X, Zhou D, Zhou J (2021) Soil and foliar applications of silicon and selenium effects on cadmium accumulation and plant growth by modulation of antioxidant system and Cd translocation: Comparison of soft vs. durum wheat varieties. J Hazard Mater 402:123546

    Article  CAS  PubMed  Google Scholar 

  • Zulfiqar U, Jiang W, Xiukang W, Hussain S, Ahmad M, Maqsood MF, Ali N, Ishfaq M, Kaleem M, Haider FU (2022) Cadmium phytotoxicity, tolerance, and advanced remediation approaches in agricultural soils; a comprehensive review. Fron Plant Sci. https://doi.org/10.3389/fpls.2022.773815

    Article  Google Scholar 

Download references

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

MW: conceived the concept. MMA and EJ: draft the manuscript. MMA and MW: revised the manuscript. All the authors have read and approved the final manuscript.

Corresponding author

Correspondence to Muhammad Waseem.

Ethics declarations

Conflict of interests

The authors have no relevant financial or non-financial interests to disclose.

Ethical approval

N/A.

Consent to participate

N/A.

Consent to publish

N/A.

Additional information

Communicated by Feibo Wu .

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aslam, M.M., Okal, E.J. & Waseem, M. Cadmium toxicity impacts plant growth and plant remediation strategies. Plant Growth Regul 99, 397–412 (2023). https://doi.org/10.1007/s10725-022-00917-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10725-022-00917-7

Keywords

Navigation