Skip to main content
Log in

Effects of cadmium and salicylic acid on growth, spectral reflectance and photosynthesis of castor bean seedlings

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Salicylic acid (SA) is a potent signaling molecule in plants and is involved in eliciting specific responses to biotic and abiotic stresses. The aim of this study is to investigate whether the exogenous application of SA can improve cadmium (Cd) induced inhibition of photosynthesis in castor bean (Ricinus communis L.) plants. The effects of SA and Cd on plant growth, spectral reflectance, pigment contents, chlorophyll fluorescence and gas exchange were examined in a hydroponic cultivation system. Results indicate that Cd exposure significantly decreased the dry biomass, photosynthetic rate (Pn), stomatal conductance (Gs), intercellular CO2 concentration (Ci), pigment contents, quantum yield of PS II photochemistry (Fv/Fm), and effective quantum yield of PS II (ΦPS II) in the plants. Pretreatment with SA alone reduced the biomass and Pn in castor bean plants, whereas pigment contents, Fv/Fm and ΦPS II remained unaffected. Reduced Gs, Ci and E, as well as increased stomatal limitation (Ls) and water use efficiency (WUE), were observed in plants pretreated with 500 μM SA alone, whereas plants treated with 250 μM SA were unaffected. Under Cd stress, SA pretreatment led to a significant decrease in Pn, Gs, E, Ci, and chlorophyll contents (Chl a, Chl b, Chl a+b, Car, Chl a/b), and an increase in Ls and WUE. Cd exposure enhanced spectral reflectance in the range 550–680 nm and 750–1,050 nm. It also decreased the normalized difference vegetation index (chlNDI), the modified red edge simple ratio index (mSR705), the red edge position (REP), water band index, and red/green ratio, whereas the structure independent pigment index (SIPI) was increased. Significant correlations (P < 0.01) between spectral indices (mSR705, chlNDI, REP, red/green ratio) and pigment contents. SA significantly worsened plant growth and photosynthesis in Cd-stressed castor bean plants, in which a stomatal limitation was involved. The leaf spectral reflectance is a sensitive indicator in determining Cd toxicity in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ahmad P, Nabi G, Ashraf M (2010) Cadmium-induced oxidative damage in mustard [Brassica juncea (L.) Czern. & Coss.] plants can be alleviated by salicylic acid. S Afr J Bot doi:10.1016/j.sajb.2010.05.003

  • Ait Ali N, Bernal MP, Ater M (2002) Tolerance and bioaccumulation of copper in Phragmites australis and Zea mays. Plant Soil 239:103–111

    Article  Google Scholar 

  • Baszynski T, Wajda L, Krol M, Wolinska D, Krupa Z, Tukendorf A (1980) Photosynthetic activities of cadmium-treated tomato plants. Physiol Plant 48:365–370

    Article  CAS  Google Scholar 

  • Belkhadi A, Hediji H, Abbes Z, Nouairi I, Barhoumi Z, Zarrouk M, Chaībi W, Djebali W (2010) Effects of exogenous salicylic acid pre-treatment on cadmium toxicity and leaf lipid content in Linum usitatissimum L. Ecotoxicol Environ Safe 73:1004–1011

    Article  CAS  Google Scholar 

  • Benavides MP, Gallego MS, Tomaro ML (2005) Cadmium toxicity in plants. Braz J Plant Physiol 17:21–34

    Article  CAS  Google Scholar 

  • Carter GA, Knapp AK (2001) Leaf optical properties in higher plants: linking spectral characteristics to stress and chlorophyll concentration. Am J Bot 88:677–684

    Article  PubMed  CAS  Google Scholar 

  • Castro KL, Sanchez-Azofeifa GA (2008) Changes in spectral properties, chlorophyll content and internal mesophyll structure of senescing Populus balsamifera and Populus tremuloides leaves. Sensors 8:51–69

    Article  CAS  Google Scholar 

  • Chao YY, Chen CY, Huang WD, Kao CH (2010) Salicylic acid-mediated hydrogen peroxide accumulation and protection against Cd toxicity in rice leaves. Plant Soil 329:327–337

    Article  CAS  Google Scholar 

  • Chugh LK, Sawhney SK (1999) Photosynthetic activities of Pisum sativum seedlings grown in presence of cadmium. Plant Physiol Biochem 37:297–303

    Article  CAS  Google Scholar 

  • Datt B (1999) A new reflectance index for remote sensing of chlorophyll content in higher plants: tests using Eucalyptus leaves. J Plant Physiol 154:30–36

    CAS  Google Scholar 

  • Drazic G, Mihailovic N (2005) Modification of cadmium toxicity in soybean seedlings by salicylic acid. Plant Sci 168:511–517

    Article  CAS  Google Scholar 

  • Ekmekçi Y, Tanyolaç D, Ayhan B (2008) Effects of cadmium on antioxidant enzyme and photosynthetic activities in leaves of two maize cultivars. J Plant Physiol 165:600–611

    Article  PubMed  Google Scholar 

  • Fariduddin Q, Hayat S, Ahmad A (2003) Salicylic acid influences net photosynthetic rate, carboxylation efficiency, nitrate reductase activity, and seed yield in Brassica juncea. Photosynthetica 41:281–284

    Article  CAS  Google Scholar 

  • Farquhar GD, Sharkey TD (1982) Stomatal conductance and photosynthesis. Annu Rev Plant Physiol 33:317–345

    Article  CAS  Google Scholar 

  • Gamon JA, Surfus JS (1999) Assessing leaf pigment content and activity with a reflectometer. New Phytol 143:105–117

    Article  CAS  Google Scholar 

  • Gitelson A, Merzlyak MN (1994) Spectral reflectance changes associated with autumn senescence of Aesculus hippocastanum L. and Acer platanoides L. leaves. Spectral features and relation to chlorophyll estimation. J Plant Physiol 143:286–292

    CAS  Google Scholar 

  • Gouia H, Ghorbal MH, Meyer C (2000) Effects of cadmium on activity of nitrate reductase and on other enzymes of the nitrate assimilation pathway in bean. Plant Physiol Bioch 38:629–638

    Article  CAS  Google Scholar 

  • Greger M, Ögren E (1991) Direct and indirect effects of Cd2+ on photosynthesis in sugar beet (Beta vulgaris). Physiol Plantarum 83:129–135

    Article  CAS  Google Scholar 

  • Hasan S, Fariduddin Q, Ali B, Hayat S, Ahmad A (2009) Cadmium: Toxicity and tolerance in plants. J Environ Biol 30:165–174

    PubMed  CAS  Google Scholar 

  • Hayat Q, Hayat S, Irfan M, Ahmad A (2010) Effect of exogenous salicylic acid under changing environment: a review. Environ Exp Bot 68:14–25

    Article  CAS  Google Scholar 

  • Herbette S, Taconnat L, Hugouvieux V, Piette L, Magniette MLM, Cuine S, Auroy P, Richaud P, Forestier C, Bourguignon J, Renou JP, Vavasseur A, Leonhardt N (2006) Genome-wide transcriptome profiling of the early cadmium response of Arabidopsis roots and shoots. Biochimie 88:1751–1765

    Article  PubMed  CAS  Google Scholar 

  • Hikosaka K, Terashima I (1995) A model of the acclimation of photosynthesis in the leaves of C3 plants to sun and shade with respect to nitrogen use. Plant Cell Environ 18:605–618

    Article  CAS  Google Scholar 

  • Khan W, Prithiviraj B, Smith DL (2003) Photosynthetic responses of corn and soybean to foliar application of salicylates. J Plant Physiol 160:485–492

    Article  PubMed  CAS  Google Scholar 

  • Krantev A, Yordanova R, Janda T, Szalai G, Popova L (2008) Treatment with salicylic acid decreases the effect of cadmium on photosynthesis in maize plants. J Plant Physiol 165:920–931

    Article  PubMed  CAS  Google Scholar 

  • Kumar P, Lakshmi NJ, Mani VP (2000) Interactive effects of salicylic acid and phytohormones on photosynthesis and grain yield of soybean (Glycine max L. Merrill). Physiol Mol Biol Plants 6:179–186

    Google Scholar 

  • Larqué-Saavedra A (1978) The anti-transpirant effect of acetylsalicylic acid on Phaseolus vulgaris L. Physiol Plant 43:126–128

    Article  Google Scholar 

  • Larqué-Saavedra A (1979) Stomatal closure in response to acetylsalicylic acid treatment. Z Pflanzenphysiol 93:371–375

    Google Scholar 

  • Lee JS (1998) The mechanism of stomatal closing by salicylic acid in Commelina communis L. J Plant Biol 41:97–102

    Article  Google Scholar 

  • Leita L, Marchiol L, Martin M, Peressotti A, Delle Vedove G, Zerbi G (1995) Transpiration dynamics in cadmium-treated soybean (Glycine max L.) plants. J Agron Crop Sci 175:153–156

    Article  CAS  Google Scholar 

  • Lichtenthaler HK (1987) Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods Enzymol 148:350–382

    Article  CAS  Google Scholar 

  • Malik D, Sheoran IS, Singh R (1992) Carbon metabolism in leaves of cadmium treated wheat seedlings. Plant Physiol Biochem 30:223–229

    CAS  Google Scholar 

  • Manthe B, Schulz M, Schnabl H (1992) Effects of salicylic acid on growth and stomatal movements of Vicia faba L.: Evidence for salicylic acid metabolization. J Chem Ecol 18:1525–1539

    Article  CAS  Google Scholar 

  • Metwally A, Finkemeier I, Georgi M, Dietz KJ (2003) Salicylic acid alleviates the cadmium toxicity in barley seedlings. Plant Physiol 132:272–281

    Article  PubMed  CAS  Google Scholar 

  • Mijovilovich A, Leitenmaier B, Meyer-Klaucke W, Kroneck PMH, Götz B, Küpper H (2009) Complexation and toxicity of copper in higher plants. II. Different mechanisms for copper versus cadmium detoxification in the copper-sensitive cadmium/zinc hyperaccumulator Thlaspi caerulescens (Ganges ecotype). Plant Physiol 151:715–731

    Article  PubMed  CAS  Google Scholar 

  • Mobin M, Khan NA (2007) Photosynthetic activity, pigment composition and antioxidative response of two mustard (Brassica juncea) cultivars differing in photosynthetic capacity subjected to cadmium stress. J Plant Physiol 164:601–610

    Article  PubMed  CAS  Google Scholar 

  • Mori IC, Pinontoan R, Kawano T, Muto S (2001) Involvement of superoxide generation in salicylic acid-induced stomatal closure in Vicia faba. Plant Cell Physiol 42:1383–1388

    Article  PubMed  CAS  Google Scholar 

  • Moussa HR, El-Gamal SM (2010) Effect of salicylic acid pretreatment on cadmium toxicity in wheat. Biol Plant 54:315–320

    Article  CAS  Google Scholar 

  • Pál M, Szalai G, Horváth E, Janda T, Páldi E (2002) Effect of salicylic acid during heavy metal stress. Acta Biol Szeg 46:119–120

    Google Scholar 

  • Peñuelas J, Baret F, Filella I (1995) Semi-empirical indices to assess carotenoids/chlorophyll a ratio from leaf spectral reflectance. Photosynthetica 31:221–230

    Google Scholar 

  • Pietrini F, Iannelli MA, Pasqualini S, Massacci A (2003) Interaction of cadmium with glutathione and photosynthesis in developing leaves and chloroplasts of Phragmites australis (Cav.) Trin. ex Steudel. Plant Physiol 133:829–837

    Article  PubMed  CAS  Google Scholar 

  • Popova LP, Maslenkova LT, Yordanova RY, Ivanova AP, Krantev AP, Szalai G, Janda T (2009) Exogenous treatment with salicylic acid attenuates cadmium toxicity in pea seedlings. Plant Physiol Biochem 47:224–231

    Article  PubMed  CAS  Google Scholar 

  • Poschenrieder C, Gunse B, Barcelo J (1989) Influence of cadmium on water relations, stomatal resistance, and abscisic acid content in expanding bean leaves. Plant Physiol 90:1365–1371

    Article  PubMed  CAS  Google Scholar 

  • Poulos HM, Goodale UM, Berlyn GP (2007) Drought response of two Mexican oak species, Quercus laceyi and Q. sideroxyla (Fagaceae), in relation to elevational position. Am J Bot 94:809–818

    Article  PubMed  CAS  Google Scholar 

  • Riedell WE, Blackmer TM (1999) Leaf reflectance spectra of cereal aphid-damaged wheat. Crop Sci 39:1835–1840

    Article  Google Scholar 

  • Rosso PH, Pushnik JC, Lay M, Ustin SL (2005) Reflectance properties and physiological responses of Salicornia virginica to heavy metal and petroleum contamination. Environ Pollut 137:241–252

    Article  PubMed  CAS  Google Scholar 

  • Sandalio LM, Rodríguez-Serrano M, Río LA, Romero-Puertas MC (2009) Reactive oxygen species and signaling in cadmium toxicity. In: del Rio LA, Puppo A (eds) Reactive Oxygen Species in Plant Signaling. Springer-Verlag, Berlin Heidelberg, pp 175–189

    Chapter  Google Scholar 

  • Shi G, Liu C, Cai Q, Liu Q, Hou C (2010) Cadmium accumulation and tolerance of two safflower cultivars in relation to photosynthesis and antioxidantive enzymes. Bull Environ Contam Toxicol 85:256–263

    Article  PubMed  CAS  Google Scholar 

  • Shi GR, Cai QS (2008) Photosynthetic and anatomic responses of peanut leaves to cadmium stress. Photosynthetica 46:627–630

    Article  CAS  Google Scholar 

  • Shi GR, Cai QS, Liu QQ, Wu L (2009) Salicylic acid-mediated alleviation of cadmium toxicity in hemp plants in relation to cadmium uptake, photosynthesis, and antioxidant enzymes. Acta Physiol Plant 31:969–977

    Article  CAS  Google Scholar 

  • Sigfridsson KGV, Bernát G, Mamedov F, Styring S (2004) Molecular interference of Cd2+ with Photosystem II. Biochim Biophys Acta 1659:19–31

    Article  PubMed  CAS  Google Scholar 

  • Sims DA, Gamon JA (2002) Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. Remote Sens Environ 81:337–354

    Article  Google Scholar 

  • Subrahmanyam D, Rathore VS (2000) Influence of manganese toxicity on photosynthesis in rice bean (Vigna umbellata) seedlings. Photosynthetica 38:449–453

    Article  CAS  Google Scholar 

  • Thorhaug A, Richardson AD, Berlyn GP (2006) Spectral reflectance of Thalassia testudinum (Hydrocharitaceae) seagrass: low salinity effects. Am J Bot 93:110–117

    Article  CAS  Google Scholar 

  • Tyystjärvi E (2008) Photoinhibition of photosystem II and photodamage of the oxygen evolving manganese cluster. Coord Chem Rev 252:361–376

    Article  Google Scholar 

  • Williams SL, Carranza A, Kunzelman J, Datta S, Kuivila KM (2009) Effects of the herbicide diuron on cordgrass (Spartina foliosa) reflectance and photosynthetic parameters. Estuar Coast 32:146–157

    Article  CAS  Google Scholar 

  • Zawoznik MS, Groppa MD, Tomaro ML, Benavides MP (2007) Endogenous salicylic acid potentiates cadmium-induced oxidative stress in Arabidopsis thaliana. Plant Sci 173:190–197

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support from the National Natural Science Foundation of China (No. 40971296) and the Anhui Provincial Natural Science Foundation (No. 11040606 M87) is gratefully acknowledged. We would like to acknowledge the two anonymous reviewers for their helpful comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gangrong Shi.

Additional information

Responsible Editor: Henk Schat.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, C., Guo, J., Cui, Y. et al. Effects of cadmium and salicylic acid on growth, spectral reflectance and photosynthesis of castor bean seedlings. Plant Soil 344, 131–141 (2011). https://doi.org/10.1007/s11104-011-0733-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-011-0733-y

Keywords

Navigation