Skip to main content
Log in

Expression of an arctic chickweed dehydrin, CarDHN, enhances tolerance to abiotic stress in tobacco plants

  • Original paper
  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Dehydrin proteins are known to serve a wide variety of intracellular protective functions and enhance the capability of plants to deal with abiotic stresses. The gene for a SK5 type dehydrin from the arctic chickweed plant Cerastium arcticum (CarDHN) was introduced into tobacco plants. Stress responses of the transgenic plants were evaluated. Compared to the untransformed wild type plants, the CarDHN-expressing plants exhibited improved tolerance to salt and osmotic stress during seed germination and seedling growth, and survived in −10 °C freezing treatment. These CarDHN plants also accumulated lower levels of free proline under salt stress and exhibited lower transcription levels of HSP70 and HSP26 under drought or salt stress, suggesting a possible pleiotropic effect of CarDHN on stress response at cellular or molecular level. However, no significant phenotypic differences were observed between the wild type and the CarDHN-expressing plants under drought stress. Our study demonstrated the specific role of the arctic chickweed dehydrin in tolerance to salt, osmotic and freezing stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Alsheikh MK, Heyen BJ, Randall SK (2003) Ion binding properties of the dehydrin ERD14 are dependent upon phosphorylation. J Biol Chem 278:40882–40889

    Article  CAS  PubMed  Google Scholar 

  • Bates LS, Waldren RP, Teare ID (1973) Rapid determination of free proline for water stress studies. Plant Soil 39:205–207

    Article  CAS  Google Scholar 

  • Battaglia M, Olvera-Carrillo Y, Garciarrubio A, Campos F, Covarrubias AA (2008) The enigmatic LEA proteins and other hydrophilins. Plant Physiol 148:6–24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brini F, Hanin M, Lumbreras V, Amara I, Khoudi H, Hassairi A, Pages M, Masmoudi K (2007) Overexpression of wheat dehydrin DHN-5 enhances tolerance to salt and osmotic stress in Arabidopsis thaliana. Plant Cell Rep 26:2017–2026

    Article  CAS  PubMed  Google Scholar 

  • Campos F, Zamudio F, Covarrubias AA (2006) Two different late embryogenesis abundant proteins from Arabidopsis thaliana contain specific domains that inhibit Escherichia coli growth. Biochem Biophys Res Commun 342:406–413

    Article  CAS  PubMed  Google Scholar 

  • Caruso A, Morabito D, Delmotte F, Kahlem G, Carpin S (2002) Dehydrin induction during drought and osmotic stress in Populus. Plant Physiol Biochem 40:1033–1042

    Article  CAS  Google Scholar 

  • Cellier F, Conejero G, Breitler JC, Casse F (1998) Molecular and physiological responses to water deficit in drought-tolerant and drought-sensitive lines of sunflower. Accumulation of dehydrin transcripts correlates with tolerance. Plant Physiol 116:319–328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen R-g, Jing H, W-l Guo, Wang S-B, Ma F, Pan B-G, Gong Z-H (2015) Silencing of dehydrin CaDHN1 diminishes tolerance to multiple abiotic stresses in Capsicum annuum L. Plant Cell Rep 34:2189–2200

    Article  CAS  PubMed  Google Scholar 

  • Close TJ (1997) Dehydrins: a commonalty in the response of plants to dehydration and low temperature. Physiol Plant 100:291–296

    Article  CAS  Google Scholar 

  • Close TJ, Kortt AA, Chandler PM (1989) A cDNA-based comparison of dehydration-induced proteins (dehydrins) in barley and corn. Plant Mol Biol 13:95–108

    Article  CAS  PubMed  Google Scholar 

  • Dure LIII, Chlan C (1981) Developmental biochemistry of cottonseed embryogenesis and germination. Plant Physiol 68:180–186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Figueras M, Pujal J, Saleh A, Savé R, Pagés M, Goday A (2004) Maize Rab17 overexpression in Arabidopsis plants promotes osmotic stress tolerance. Ann Appl Biol 144:251–257

    Article  CAS  Google Scholar 

  • Gilmour SJ, Sebolt AM, Salazar MP, Everard JD, Thomashow MF (2000) Overexpression of the Arabidopsis CBF3 transcriptional activator mimics multiple biochemical changes associated with cold acclimation. Plant Physiol 124:1854–1865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goday A, Jensen AB, Culianez-Macia FA, Mar Alba M, Figueras M, Serratosa J, Torrent M, Pages M (1994) The maize abscisic acid-responsive protein Rab17 is located in the nucleus and interacts with nuclear localization signals. Plant Cell 6:351–360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Graether SP, Boddington KF (2014) Disorder and function: a review of the dehydrin protein family. Front Plant Sci. Article 576. doi: 10.3389/fpls.2014.00576

  • Han Y, Yin S, Huang L (2015) Towards plant salinity tolerance-implications from ion transporters and biochemical regulation. Plant Growth Regul 76:13–23

    Article  CAS  Google Scholar 

  • Hanin M, Brini F, Ebel C, Toda Y, Takeda S, Masmoudi K (2011) Plant dehydrins and stress tolerance: versatile proteins for complex mechanisms. Plant Signal Behav 6:1503–1509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hara M, Terashima S, Fukaya T, Kuboi T (2003) Enhancement of cold tolerance and inhibition of lipid peroxidation by citrus dehydrin in transgenic tobacco. Planta 217:290–298

    CAS  PubMed  Google Scholar 

  • Hara M, Fujinaga M, Kuboi T (2005) Metal binding by citrus dehydrin with histidine-rich domains. J Exp Bot 56:2695–2703

    Article  CAS  PubMed  Google Scholar 

  • Hara M, Shinoda Y, Tanaka Y, Kuboi T (2009) DNA binding of citrus dehydrin promoted by zinc ion. Plant Cell Environ 32:532–541

    Article  CAS  PubMed  Google Scholar 

  • Hasegawa PM, Bressan RA, Zhu JK, Bohnert HJ (2000) Plant cellular and molecular responses to high salinity. Ann Rev Plant Physiol Plant Mol Biol 51:463–499

    Article  CAS  Google Scholar 

  • Hoekstra FA, Golovina EA, Buitink J (2001) Mechanisms of plant desiccation tolerance. Trends Plant Sci 6:431–438

    Article  CAS  PubMed  Google Scholar 

  • Iturriaga G, Schneider K, Salamini F, Bartels D (1992) Expression of desiccation-related proteins from the resurrection plant Craterostigma plantagineum in transgenic tobacco. Plant Mol Biol 20:555–558

    Article  CAS  PubMed  Google Scholar 

  • Jensen AB, Goday A, Figueras M (1998) Phosphorylation mediates the nuclear targeting of the maize Rab17 protein. Plant J 13:691–697

    Article  CAS  PubMed  Google Scholar 

  • Jha B, Lal S, Tiwari V, Yadav SK, Agarwal PK (2012) The SbASR-1 gene cloned from an extreme halophyte Salicornia brachiata enhances salt tolerance in transgenic tobacco. Mar Biotechnol 14:782–792

    Article  CAS  PubMed  Google Scholar 

  • Kalifa Y, Perlson E, Gilad A, Konrad Z, Scolnik PA, Bar-Zvi D (2004) Over-expression of the water and salt stress-regulated Asr1 gene confers an increased salt tolerance. Plant Cell Environ 27:1459–1468

    Article  CAS  Google Scholar 

  • Karan R, Subudhi PK (2014) Overexpression of an adenosine diphosphate-ribosylation factor gene from the halophytic grass Spartina alterniflora confers salinity and drought tolerance in transgenic Arabidopsis. Plant Cell Rep 33:373–384

    Article  CAS  PubMed  Google Scholar 

  • Kasuga M, Miura S, Shinozaki K, Yamaguchi-Shinozaki K (2004) A combination of the Arabidopsis DREB1A gene and stress-inducible rd29A promoter improved drought- and low-temperature stress tolerance in tobacco by gene transfer. Plant Cell Physiol 45:346–350

    Article  CAS  PubMed  Google Scholar 

  • Kim IS, Kim HY, Kim YS, Choi HG, Kang SH, Yoon HS (2013) Expression of dehydrin gene from arctic Cerastium arcticum increases abiotic stress tolerance and enhances the fermentation capacity of a genetically engineered Saccharomyces cerevisiae laboratory strain. Appl Microbiol Biotechnol 97:8997–9009

    Article  CAS  PubMed  Google Scholar 

  • Koag MC, Fenton RD, Wilkens S, Timothy CJ (2003) The binding of maize DHN1 to lipid vesicles. Gain of structure and lipid specificity. J Plant Physiol 131:309–316

    Article  CAS  Google Scholar 

  • Krüger C, Berkowitz O, Stephan UW, Hell R (2002) A metal-binding member of the late embryogenesis abundant protein family transports iron in the phloem of Ricinus communis L. J Biol Chem 277:25062–25069

    Article  CAS  PubMed  Google Scholar 

  • Li W, Li M, Zhang W, Welti R, Wang X (2004) The plasma membrane–bound phospholipase Dδ enhances freezing tolerance in Arabidopsis thaliana. Nat. Biotech 22:427–433

    Article  CAS  Google Scholar 

  • Liu L, Xu X, Xu Q, Wang S, Xu J (2014) Transgenic tobacco plants expressing PicW gene from Picea wilsonii exhibit enhanced freezing tolerance. Plant Cell Tiss Organ Cult 118:391–400

    Article  CAS  Google Scholar 

  • Liu H, Yu C, Li H, Ouyang B, Wang T, Zhang J, Wang X, Ye Z (2015) Overexpression of ShDHN, a dehydrin gene from Solanum habrochaites enhances tolerance to multiple abiotic stresses in tomato. Plant Sci 231:198–211

    Article  CAS  PubMed  Google Scholar 

  • Mouillon J-M, Gustafsson P, Harryson P (2006) Structural investigation of disordered stress proteins. Comparison of full-length dehydrins with isolated peptides of their conserved segments. Plant Physiol 141:638–650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Nylander M, Svensson J, Palva ET, Welin BV (2001) Stress-induced accumulation and tissue-specific localization of dehydrins in Arabidopsis thaliana. Plant Mol Biol 45:263–279

    Article  CAS  PubMed  Google Scholar 

  • Østergaard L, King GJ (2008) Standardized gene nomenclature for the Brassica genus. Plant Methods 4:10. doi:10.1186/1746-4811-4-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park SY, Noh KJ, Yoo JH, Yu JW, Lee BW, Kim JG (2006) Rapid upregulation of dehydrin3 and dehydrin4 in response to dehydration is a characteristic of drought-tolerant genotypes in barley. J Plant Biol 45:455–462

    Article  Google Scholar 

  • Peng Y, Reyes JL, Wei H, Yang Y, Karlson D, Covarrubias AA, Krebs SL, Fessehaie A, Arora R (2008) RcDhn5, a cold acclimation-responsive dehydrin from Rhododendron catawbiense rescues enzyme activity from dehydration effects in vitro and enhances freezing tolerance in RcDhn5-overexpressing Arabidopsis plants. Physiol Plant 134:583–597

    Article  CAS  PubMed  Google Scholar 

  • Plana M, Itarte E, Eritja R, Goday A, Pages M, Martinez MC (1991) Phosphorylation of maize Rab17 protein by casein kinase 2. J Biol Chem 266:22510–22514

    CAS  PubMed  Google Scholar 

  • Puhakainen T, Hess MV, Mäkelä P, Svensson J, Heino P, Palva ET (2004) Overexpression of multiple dehydrin genes enchances tolerance to freezing stress in Arabidopsis. Plant Mol Biol 54:743–753

    Article  CAS  PubMed  Google Scholar 

  • Richard S, Morency M-J, Drevet C, Jouanin L, Séguin A (2000) Isolation and characterization of a dehydrin gene from white spruce induced upon wounding, drought and cold stresses. Plant Mol Biol 43:1–10

    Article  CAS  PubMed  Google Scholar 

  • Rizhsky L, Liang H, Mittler R (2002) The combined effect of drought stress and heat shock on gene expression in tobacco. Plant Physiol 130:1143–1151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rorat T (2006) Plant dehydrins—tissue location, structure and function. Cell Mol Biol Lett 11:536–556

    Article  CAS  PubMed  Google Scholar 

  • RoyChoudhury A, Roy C, Sengupta DN (2007) Transgenic tobacco plants overexpressing the heterologous lea gene Rab16A from rice during high salt and water deficit display enhanced tolerance to salinity stress. Plant Cell Rep 26:1839–1859

    Article  CAS  PubMed  Google Scholar 

  • Saibi W, Feki K, Mahmoud RB, Brini F (2015) Durum wheat dehydrin (DHN-5) confers salinity tolerance to transgenic Arabidopsis plants through the regulation of proline metabolism and ROS scavenging system. Planta 242:1187–1194

    Article  CAS  PubMed  Google Scholar 

  • Schmidt GW, Delaney SK (2010) Stable internal reference genes for normalization of real-time RT-PCR in tobacco (Nicotiana tabacum) during development and abiotic stress. Mol Genet Genomics 283:233–241

    Article  CAS  PubMed  Google Scholar 

  • Singh N, Mishra A, Jha B (2014) Over-expression of the peroxisomal ascorbate peroxidase (SbpAPX) gene cloned from halophyte Salicornia brachiate confers salt and drought stress tolerance in transgenic tobacco. Mar Biotechnol 16:321–332

    Article  CAS  PubMed  Google Scholar 

  • Szabala BM, Fudali S, Rorat T (2014) Accumulation of acidic SK3 dehydrins in phloem cells of cold- and drought-stressed plants of the Solanaceae. Planta 239:847–863

    Article  CAS  PubMed  Google Scholar 

  • Timperio AM, Egidi MG, Zolla L (2008) Proteomics applied on plant abiotic stresses: role of heat shock proteins (HSP). J Proteomics 71:391–411

    Article  CAS  PubMed  Google Scholar 

  • Tsai F-Y, Zhang X-H, Ulanov A, Widholm JM (2010) The application of the yeast N-acetyltransferase MPR1 gene and the proline analogue L-azetidine-2-carboxylic acid as a selectable marker system for plant transformation. J Exp Bot 61:2561–2573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang WX, Vinocur B, Altman A (2003) Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 218:1–14

    Article  CAS  PubMed  Google Scholar 

  • Wang W, Vinocur B, Shoseyov O, Altman A (2004) Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends Plant Sci 9:244–252

    Article  CAS  PubMed  Google Scholar 

  • Xie C, Zhang R, Qu Y, Miao Z, Zhang Y, Shen X, Wang T, Dong J (2012) Overexpression of MtCAS31 enhances drought tolerance in transgenic Arabidopsis by reducing stomatal density. New Phytol 195:124–135

    Article  CAS  PubMed  Google Scholar 

  • Xing X, Liu Y, Kong X, Liu Y, Li D (2011) Overexpression of a maize dehydrin gene, ZmDHN2b, in tobacco enhances tolerance to low temperature. Plant Growth Regul 65:109–118

    Article  CAS  Google Scholar 

  • Xu J, Zhang YX, Wei W, Han L, Guan ZQ, Wang Z, Chai TC (2008) BjDHNs confer heavy-metal tolerance in plants. Mol Biotechnol 38:91–98

    Article  CAS  PubMed  Google Scholar 

  • Zhai C, Lan J, Wang H, Li L, Cheng X, Liu G (2011) Rice dehydrin K-segments have in vitro antibacterial activity. Biochemistry (Moscow) 76:645–650

    Article  CAS  Google Scholar 

  • Zhang L, Becker DF (2015) Connecting proline metabolism and signaling pathways in plant senescence. Front Plant Sci. Article 552. doi: 10.3389/fpls.2015.00552

  • Zhang X-H, Moloney MM, Chinnappa CC (1996) Analysis of an ABA- and osmotic stress-inducible dehydrin from Stellaria longipes. J Plant Physiol 149:617–622

    Article  CAS  Google Scholar 

  • Zhang X-H, Widholm JM, Portis AR Jr (2001) Photosynthetic properties of two different soybean suspension cultures. J Plant Physiol 158:357–365

    Article  CAS  Google Scholar 

  • Zhang X-H, Takagi H, Widholm JM (2004) Expression of a novel yeast gene that detoxifies the proline analog azetidine-2-carboxylate confers resistance during tobacco seed germination, callus and shoot formation. Plant Cell Rep 22:615–622

    Article  CAS  PubMed  Google Scholar 

  • Zhang X-H, Webb J, Huang Y-H, Lin L, Tang R-S, Liu A (2011) Hybrid Rubisco of tomato large subunits and tobacco small subunits is functional in tobacco plants. Plant Sci 180:480–488

    Article  CAS  PubMed  Google Scholar 

  • Zhang X-H, Keating P, Wang X-W, Huang Y-H, Martin J, Hartmann JX, Liu A (2014) Production of functional native human interleukin-2 in tobacco chloroplasts. Mol Biotechnol 56:369–379

    Article  CAS  PubMed  Google Scholar 

  • Zhu JK (2002) Salt and drought stress signal transduction in plants. Ann Rev Plant Biol 53:247–273

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The work was supported in part by a fund from Florida Atlantic University to XHZ. We thank Dr. Ramaswamy Narayanan for allowing us to use his lab facility.

Author contributions

XHZ conceived and designed the experiments. WH, XLJ and XHZ performed the experiments and analyzed the data. XHZ wrote the manuscript. All commented on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xing-Hai Zhang.

Ethics declarations

Conflict of interest

We declare no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 6272 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hill, W., Jin, XL. & Zhang, XH. Expression of an arctic chickweed dehydrin, CarDHN, enhances tolerance to abiotic stress in tobacco plants. Plant Growth Regul 80, 323–334 (2016). https://doi.org/10.1007/s10725-016-0169-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10725-016-0169-8

Keywords

Navigation