Skip to main content
Log in

Transgenic tobacco plants expressing PicW gene from Picea wilsonii exhibit enhanced freezing tolerance

  • Original Paper
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

A cold-induced gene of 669 bp in length without introns, PicW, was cloned from Picea. wilsonii, a cold tolerant conifer species. Sequence analysis showed that it was a member of the dehydrin family because of its conserved amino acid constitution and protein secondary structure. The protein was rich in hydrophilic amino acids such as alanine, lysine, glutamic acid, glutamine and threonine, but devoid of two hydrophobic amino acids, cysteine and tryptophan. The PicW gene contained five repeated motifs homologous to the core K-segment in dehydrins. Protein secondary structure prediction showed that PicW comprised 29 % α-helix, mostly in the K-homologous segment, and random coils. The PicW gene was cloned into the expression vector PEZR(K)-LC under the 35S promoter and transformed into tobacco plants. After treatment at −5 °C for 3 h, all of the tobacco plants were wilting. However, the transgenic plants showed better growth performance than wild-type plants. Further tests of physiological indexes including relative electrolyte leakage and malondialdehyde content, proline and soluble sugar content also revealed significant differences between the wild-type and transgenic tobacco plants. It was concluded that the PicW gene could be an important gene resource for freezing-tolerant plant breeding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Artlip TS, Callahan AM, Bassett CL, Wisniewski ME (1997) Seasonal expression of a dehydrin gene in sibling deciduous and evergreen genotypes of peach (Prunus persica [L.] Batsch). Plant Mol Biol 33(1):61–70

    Article  CAS  PubMed  Google Scholar 

  • Asghar R, Fenton RD, DeMason D, Close TJ (1994) Nuclear and cytoplasmic localization of maize embryo and aleurone dehydrin. Protoplasma 177(3–4):87–94

    Article  CAS  Google Scholar 

  • Attaway JA (1997) A history of florida citrus freezes. Florida Science Source, Ocala

    Google Scholar 

  • Burke MJ, Gusta LV, Quamme HA, Weiser CJ, Li PH (1976) Freezing and injury in plants. Ann Rev Plant Physiol 27:507–528

    Article  Google Scholar 

  • Campbell SA, Close TJ (1997) Dehydrins: genes, proteins, and associations with phenotypic traits. New Phytol 137(1):61–74

    Article  CAS  Google Scholar 

  • Chen K, Arora R (2014) Understanding the cellular mechanism of recovery from freeze-thaw injury in spinach: possible role of aquaporins, heat shock proteins, dehydrin and antioxidant system. Physiol Plant 150:374–387

    Article  CAS  PubMed  Google Scholar 

  • Close TJ (1996) Dehydrins: emergence of a biochemical role of a family of plant dehydration proteins. Physiol Plant 97(4):795–803

    Article  CAS  Google Scholar 

  • Close TJ (1997) Dehydrins: a commonalty in the response of plants to dehydration and low temperature. Physiol Plant 100(2):291–296

    Article  CAS  Google Scholar 

  • Danyluk J, Perron A, Houde M, Limin A, Fowler B, Benhamou N, Sarhan F (1998) Accumulation of an acidic dehydrin in the vicinity of the plasma membrane during cold acclimation of wheat. Plant Cell 10(4):623–638

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • DeVries AL (1986) Antifreeze glycopeptides and peptides: interactions with ice and water. Methods Enzymol 127:293–303

    Article  CAS  PubMed  Google Scholar 

  • DeVries AL, Wohlschlag DE (1969) Freezing resistance in some Antarctic fishes. Science 163(3871):1073–1075

    Article  CAS  PubMed  Google Scholar 

  • Doucet CJ, Byass L, Elias L, Worrall D, Smallwood M, Bowles DJ (2000) Distribution and characterization of recrystallization inhibitor activity in plant and lichen species from the UK and maritime Antarctic. Cryobiology 40(3):218–227

    Article  CAS  PubMed  Google Scholar 

  • Drira M, Saibi W, Brini F, Gargouri A, Masmoudi K, Hanin M (2013) The K-segments of the wheat dehydrin DHN-5 are essential for the protection of lactate dehydrogenase and beta-glucosidase activities in vitro. Mol Biotechnol 54(2):643–650

    Article  CAS  PubMed  Google Scholar 

  • Dube MP, Castonguay Y, Cloutier J, Michaud J, Bertrand A (2013) Characterization of two novel cold-inducible K-3 dehydrin genes from alfalfa (Medicago sativa spp. sativa L.). Theor Appl Genet 126(3):823–835

    Article  CAS  PubMed  Google Scholar 

  • Duman JG, Olsen TM (1993) Thermal hysteresis protein activity in bacteria, fungi, and phylogenetically diverse plants. Cryobiology 30(3):322–328

    Article  Google Scholar 

  • Egerton-Warburton LM, Balsamo RA, Close TJ (1997) Temporal accumulation and ultrastructural localization of dehydrins in Zea mays. Physiol Plant 101(3):545–555

    Article  CAS  Google Scholar 

  • Ekramoddoullah KM, Davidson JJ (1995) A method for the determination of conifer foliage protein extracted using sodium dodecyl sulphate and mercaptoethanol. Phytochem Anal 6(1):20–24

    Article  CAS  Google Scholar 

  • Ekramoddoullah AK, Taylor DW (1996) Seasonal variation of western white pine (Pinus monticola D. Don) foliage proteins. Plant Cell Physiol 37(2):189–199

    Article  CAS  PubMed  Google Scholar 

  • Fan Y, Liu B, Wang H, Wang S, Wang J (2002) Cloning of an antifreeze protein gene from carrot and its influence on cold tolerance in transgenic tobacco plants. Plant Cell Rep 21(4):296–301

    Article  CAS  Google Scholar 

  • Goni O, Sanchez-Ballesta MT, Merodio C, Escribano MI (2010) Potent cryoprotective activity of cold and CO2-regulated cherimoya (Annona cherimola) endochitinase. J Plant Physiol 167(14):1119–1129

    Article  CAS  PubMed  Google Scholar 

  • Goyal K, Walton LJ, Tunnacliffe A (2005) LEA proteins prevent protein aggregation due to water stress. Biochem J 388:151–157

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Grandy AS, Erich MS, Porter GA (2000) Suitability of the anthrone–sulfuric acid reagent for determining water soluble carbohydrates in soil water extracts. Soil Biol Biochem 32(5):725–727

    Article  CAS  Google Scholar 

  • Griffith M, Yaish MW (2004) Antifreeze proteins in overwintering plants: a tale of two activities. Trends Plant Sci 9(8):399–405

    Article  CAS  PubMed  Google Scholar 

  • Griffith M, Ala P, Yang DS, Hon WC, Moffatt BA (1992) Antifreeze protein produced endogenously in winter rye leaves. Plant Physiol 100(2):593–596

    Article  CAS  PubMed Central  Google Scholar 

  • Hara M, Terashima S, Fukaya T, Kuboi T (2003) Enhancement of cold tolerance and inhibition of lipid peroxidation by citrus dehydrin in transgenic tobacco. Planta 217(2):290–298

    CAS  PubMed  Google Scholar 

  • Horsch RB, Fry JE, Hoffmann NL, Eichholtz D, Rogers SG, Fraley RT (1985) A simple and general method for transferring genes into plants. Science 227(4691):1229–1231

    Article  CAS  Google Scholar 

  • Huang T, Duman JG (2002) Cloning and characterization of a thermal hysteresis (antifreeze) protein with DNA-binding activity from winter bittersweet nightshade, Solanum dulcamara. Plant Mol Biol 48(4):339–350

    Article  CAS  PubMed  Google Scholar 

  • Hughes SL, Schart V, Malcolmson J, Hogarth KA, Martynowicz DM, Tralman-Baker E, Patel SN, Graether SP (2013) The importance of size and disorder in the cryoprotective effects of dehydrins. Plant Physiol 163(3):1376–1386

    Article  CAS  PubMed  Google Scholar 

  • Imamura T, Higuchi A, Takahashi H (2013) Dehydrins are highly expressed in overwintering buds and enhance drought and freezing tolerance in Gentiana triflora. Plant Sci 213:55–56

    Article  CAS  PubMed  Google Scholar 

  • Ingram J, Bartels D (1996) The molecular basis of dehydration tolerance in plants. Ann Rev Plant Physiol Mol Biol 47:377–403

    Article  CAS  Google Scholar 

  • Jaglo-Ottosen KR, Gilmour SJ, Zarka DG, Schabenberger O, Thomashow MF (1998) Arabidopsis CBF1 overexpression induces COR genes and enhances freezing tolerance. Science 280(5360):104–106

    Article  CAS  PubMed  Google Scholar 

  • Jarvis SB, Taylor MA, MacLeod MR, Davies HV (1996) Cloning and characterisation of the cDNA clones of three genes that are differentially expressed during dormancy-breakage in the seeds of Douglas fir (Pseudotsuga menziesii). J Plant Physiol 147(5):559–566

    Article  CAS  Google Scholar 

  • Kikuchi T, Masuda K (2009) Class II chitinase accumulated in the bark tissue involves with the cold hardiness of shoot stems in highbush blueberry (Vaccinium corymbosum L.). Sci Hortic 120(2):230–236

  • Knight CA, Wen D, Laursen RA (1995) Nonequilibrium antifreeze peptides and the recrystallization of ice. Cryobiology 32(1):23–34

    Article  CAS  PubMed  Google Scholar 

  • Koag MC, Wilkens S, Fenton RD, Resnik J, Vo E, Close TJ (2009) The K-segment of maize DHN1 mediates binding to anionic phospholipid vesicles and concomitant structural changes. Plant Physiol 150(3):1503–1514

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Limin AE, Danyluk J, Chauvin LP, Fowler DB, Sarhan F (1997) Chromosome mapping of low-temperature induced Wcs120 family genes and regulation of cold-tolerance expression in wheat. Mol Gen Genet 253(6):720–727

    Article  CAS  PubMed  Google Scholar 

  • Liu J-J, Ekramoddoullah AKM, Taylor D, Piggott N, Lane S, Hawkins B (2004) Characterization of Picg5 novel proteins associated with seasonal cold acclimation of white spruce (Picea glauca). Trees 18(6):649–657

    Article  CAS  Google Scholar 

  • Mattheus N, Ekramoddoullah AKM, Lee SP (2003) Isolation of high-quality RNA from white spruce tissue using a three-stage purification method and subsequent cloning of a transcript from the PR-10 gene family. Phytochem Anal 14(4):209–215

    Article  CAS  PubMed  Google Scholar 

  • Neven LG, Haskell DW, Hofig A, Li QB, Guy CL (1993) Characterization of a spinach gene responsive to low temperature and water stress. Plant Mol Biol 21(2):291–305

    Article  CAS  PubMed  Google Scholar 

  • Ouellet F, Houde M, Sarhan F (1993) Purification, characterization and cDNA cloning of the 200 kDa protein induced by cold acclimation in wheat. Plant Cell Physiol 34(1):59–65

    CAS  PubMed  Google Scholar 

  • Pearce RS (2001) Plant freezing and damage. Ann Bot 87(4):417–424

    Article  CAS  Google Scholar 

  • Puhakainen T, Hess MW, Makela P, Svensson J, Heino P, Palva ET (2004) Overexpression of multiple dehydrin genes enhances tolerance to freezing stress in Arabidopsis. Plant Mol Biol 54(5):743–753

    Article  CAS  PubMed  Google Scholar 

  • Rahman LN, Chen L, Nazim S, Bamm VV, Yaish MW, Moffatt BA, Dutcher JR, Harauz G (2010) Interactions of intrinsically disordered Thellungiella salsuginea dehydrins TsDHN-1 and TsDHN-2 with membranes-synergistic effects of lipid composition and temperature on secondary structure. Biochem Cell Biol 88(5):791–807

    Article  CAS  PubMed  Google Scholar 

  • Raymond JA, DeVries AL (1977) Adsorption inhibition as a mechanism of freezing resistance in polar fishes. Proc Natl Acad Sci 74(6):2589–2593

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rodriguez EM, Svensson JT, Malatrasi M, Choi DW, Close TJ (2005) Barley Dhn13 encodes a KS-type dehydrin with constitutive and stress responsive expression. Theor Appl Genet 110(5):852–858

    Article  CAS  PubMed  Google Scholar 

  • Rorat T (2006) Plant dehydrins-Tissue location, structure and function. Cell Mol Biol Lett 11(4):536–556

    Article  CAS  PubMed  Google Scholar 

  • Sasaki K, Christov NK, Tsuda S, Imai R (2014) Identification of a novel LEA protein involved in freezing tolerance in wheat. Plant Cell Physiol 55(1):136–147

    Article  CAS  PubMed  Google Scholar 

  • Sidebottom C, Buckley S, Pudney P, Twigg S, Jarman C, Holt C, Telford J, McArthur A, Worrall D, Hubbard R, Lillford P (2000) Heat-stable antifreeze protein from grass. Nature 406(6793):256

    Article  CAS  PubMed  Google Scholar 

  • Sun J, Nie LZ, Sun GQ, Guo JF, Liu YZ (2013) Cloning and characterization of dehydrin gene from Ammopiptanthus mongolicus. Mol Biol Rep 40(3):2281–2291

    Article  CAS  PubMed  Google Scholar 

  • Urrutia ME, Duman JG, Knight CA (1992) Plant thermal hysteresis proteins. Biochim Biophys Acta 1121(1–2):199–206

    Article  CAS  PubMed  Google Scholar 

  • Velten J, Oliver MJ (2001) Tr288, a rehydrin with a dehydrin twist. Plant Mol Biol 45(6):713–722

    Article  CAS  PubMed  Google Scholar 

  • Wang W, Wei L (2003) Purification of boiling-soluble antifreeze protein from the legume Ammopiptanthus mongolicus. Prep Biochem Biotechnol 33(1):67–80

    Article  CAS  PubMed  Google Scholar 

  • Welin BV, Olson A, Nylander M, Palva ET (1994) Characterization and differential expression of dhn/lea/rab-like genes during cold acclimation and drought stress in Arabidopsis thaliana. Plant Mol Biol 26(1):131–144

    Article  CAS  PubMed  Google Scholar 

  • Wisniewski M, Webb R, Balsamo R, Close TJ, Yu X-M, Griffith M (1999) Purification, immunolocalization, cryoprotective, and antifreeze activity of PCA60: a dehydrin from peach (Prunus persica). Physiol Plant 105(4):600–608

    Article  CAS  Google Scholar 

  • Worrall D, Elias L, Ashford D, Smallwood M, Sidebottom C, Lillford P, Telford J, Holt C, Bowles D (1998) A carrot leucine-rich-repeat protein that inhibits ice recrystallization. Science 282(5386):115–117

    Article  CAS  PubMed  Google Scholar 

  • Xu J, Belanger F, Huang B (2008) Differential gene expression in shoots and roots under heat stress for a geothermal and non-thermal Agrostis grass species contrasting in heat tolerance. Environ Exp Bot 63(1–3):240–247

    Article  CAS  Google Scholar 

  • Xu H, Yang Y, Xie L, Li X, Feng C, Chen J, Xu C (2014) Involvement of multiple types of dehydrins in the freezing response in loquat (Eriobotrya japonica). PLoS One 9(1):e87575

    Article  PubMed Central  PubMed  Google Scholar 

  • Yu X, Ekramoddoullah AKM, Misra S (2000) Characterization of Pin m III cDNA in western white pine. Tree Physiol 20(10):663–671

    Article  CAS  PubMed  Google Scholar 

  • Yu SS, Yin LK, Mu SY (2010) Discovery of an antifreeze protein in the leaves of Ammopiptanthus nanus. Can J Plant Sci 90(1):35–40

    Article  CAS  Google Scholar 

  • Zamani A, Sturrock R, Ekramoddoullah AKM, Wiseman SB, Griffith M (2003) Endochitinase activity in the apoplastic fluid of Phellinus weirii-infected Douglas-fir and its association with over wintering and antifreeze activity. For Pathol 33(5):299–316

    Article  Google Scholar 

  • Zhang ZL (1990) Plant physiology experiment instruction. Higher Education Press, Beijing

    Google Scholar 

  • Zhang DZ, Wang PH, Zhao HX (1990) Determination of the content of free proline in wheat leaves. Plant Physiol Commun 4:62–65

    Google Scholar 

  • Zhang YX, Wang Z, Xu J (2007) Molecular mechanism of dehydrin in response to environmental stress in plant. Prog Nat Sci 17(3):237–246

    Article  CAS  Google Scholar 

  • Zou CJ, Zhang C, Ma YL, Xu WD (2006) Comparison of different methods for extraction of gross DNA of three ecotype Picea mongolia. J Inn Mon For Sci Tech 32(3):35–38

    Google Scholar 

Download references

Acknowledgments

The authors wish to thank the Forestry Public Benefit Research Program (# 201004009) for funding support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jichen Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Xu, X., Xu, Q. et al. Transgenic tobacco plants expressing PicW gene from Picea wilsonii exhibit enhanced freezing tolerance. Plant Cell Tiss Organ Cult 118, 391–400 (2014). https://doi.org/10.1007/s11240-014-0491-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-014-0491-7

Keywords

Navigation