Skip to main content
Log in

Enhancement of Drought Tolerance in Transgenic Arabidopsis thaliana Plants Overexpressing Chickpea Ca14-3-3 Gene

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Plant 14-3-3 proteins are highly conserved, phospho-binding proteins, ubiquitous in nature that control major cellular functions. The genes encoding 14-3-3 family proteins are reported for involvement in plant stress tolerance. Therefore, we here studied the function of chickpea (Cicer arietinum L.) 14-3-3-like protein B with increased expression under drought stress in Arabidopsis thaliana. Compared to wild type, Ca-14-3-3-like protein B overexpressing lines showed a high rate of germination, more biomass, and increased root length at the seedling stage under osmotic stress caused by both polyethylene glycol (PEG-6000) and mannitol. In addition, chlorophyll content, proline content, relative water content (RWC), antioxidant enzyme activities, net photosynthesis, and water use efficiency were also higher in transgenic lines as compared to WT after drought stress. Staining with DAB and NBT indicated that transgenic lines accumulated less H2O2 than WT plants. Furthermore, Ca-14-3-3-like protein B overexpression also upregulated the transcript level of the certain stress-responsive genes (RD20, PDF1, and P5CS1) and of genes involved in lignin biosynthesis (PAL and CAD). Overall it can be concluded that Ca-14-3-3-like protein B improves the drought tolerance when overexpressed in Arabidopsis plants and the gene thus appears to be a promising candidate for crop improvement efforts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Aebi H, Wyss SR, Scherz B, Skvaril F (1974) Heterogeneity of erythrocyte catalase II: isolation and characterization of normal and variant erythrocyte catalase and their subunits. Eur J Biochem 48:137–145

    Article  CAS  PubMed  Google Scholar 

  • Agrawal L, Gupta S, Mishra SK, Pandey G, Kumar S, Chauhan PS, Chakrabarty D, Nautiyal CS (2016) Elucidation of complex nature of PEG induced drought-stress response in rice root using comparative proteomics approach. Front Plant Sci 29:1466

    Google Scholar 

  • Alexieva V, Sergiev I, Mapelli S, Karanov E (2001) The effect of drought and ultraviolet radiation on growth and stress markers in pea and wheat. Plant Cell Environ 24:1337–1344

    Article  CAS  Google Scholar 

  • Bairoch A, Bucher P (1994) PROSITE: recent developments. Nucleic Acids Res 22:3583–3589

    CAS  PubMed  PubMed Central  Google Scholar 

  • Barrs H, Weatherley P (1962) A re-examination of the relative turgidity technique for estimating water deficits in leaves. Aust J Biol Sci 15:413–428

    Article  Google Scholar 

  • Bates LS, Waldren RP, Teare ID (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39:205–207

    Article  CAS  Google Scholar 

  • Beauchamp C, Fridovich I (1971) Superoxide dismutase: Improved assays and an assay applicable to acrylamide gels. Anal Biochem 44:276–287

    Article  CAS  PubMed  Google Scholar 

  • Camoni L, Visconti S, Aducci P, Marra M (2018) 14-3-3 proteins in plant hormone signaling: doing several things at once. Front Plant Sci 9:297

    Article  PubMed  PubMed Central  Google Scholar 

  • Campo S, Peris-Peris C, Montesinos L, Peñas G, Messeguer J, San SB (2012) Expression of the maize ZmGF14-6 gene in rice confers tolerance to drought stress while enhancing susceptibility to pathogen infection. J Exp Bot 63:983–999

    Article  CAS  PubMed  Google Scholar 

  • Cheng C, Wang Y, Chai F, Li S, Xin H, Liang Z (2018) Genome-wide identification and characterization of the 14-3-3 family in Vitis vinifera L. during berry development and cold- and heat-stress response. BMC Genom 19:579

    Article  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  CAS  PubMed  Google Scholar 

  • Cotelle V, Leonhardt N (2016) 14-3-3 proteins in guard cell signaling. Front Plant Sci 6:1210

    Article  PubMed  PubMed Central  Google Scholar 

  • Cruz de Carvalho MH (2008) Drought stress and reactive oxygen species: production, scavenging and signaling. Plant Signal Behav 3:156–165

    Article  PubMed  PubMed Central  Google Scholar 

  • Dai X, Xu Y, Ma Q, Xu W, Wang T, Xue Y, Chong K (2007) Overexpression of an R1R2R3 MYB gene, OsMYB3R-2, increases tolerance to freezing, drought, and salt stress in transgenic Arabidopsis. Plant Physiol 143:1739–1751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dubey AK, Kumar N, Kumar A, Ansari MA, Ranjan R, Gautam A, Meenakshi SN, Pandey V, Behera SK, Mallick S, Pande V, Sanyal I (2019) Over-expression of CarMT gene modulates the physiological performance and antioxidant defense system to provide tolerance against drought stress in Arabidopsis thaliana L. Ecotoxicol Environ Safety 171:54–65

    Article  CAS  PubMed  Google Scholar 

  • El-Esawi MA, Al-Ghamdi AA, Ali HM, Ahmad M (2019) Overexpression of at WRKY30 transcription factor enhances heat and drought stress tolerance in wheat (Triticum aestivum L.). Genes (basel) 10:163

    Article  CAS  PubMed  Google Scholar 

  • Fujita Y, Fujita M, Shinozaki K, Yamaguchi-Shinozaki K (2011) ABA-mediated transcriptional regulation in response to osmotic stress in plants. J Plant Res 124:509–525

    Article  CAS  PubMed  Google Scholar 

  • Fujita Y, Yoshida T, Yamaguchi-Shinozaki K (2013) Pivotal role of the AREB/ABF-SnRK2 pathway in ABRE-mediated transcription in response to osmotic stress in plants. Physiol Plant 147:15–27

    Article  CAS  PubMed  Google Scholar 

  • Gao H, Wang Y, Xu P, Zhang Z (2018) Overexpression of a WRKY transcription factor TaWRKY2 enhances drought stress tolerance in transgenic wheat. Front Plant Sci 9:997

    Article  PubMed  PubMed Central  Google Scholar 

  • Gupta S, Mishra SK, Misra S, Pandey V, Agrawal L, Nautiyal CS, Chauhan PS (2020) Revealing the complexity of protein abundance in chickpea root under drought-stress using a comparative proteomics approach. Plant Physiol Biochem 151:88–102

    Article  CAS  PubMed  Google Scholar 

  • Hasanuzzaman M, Shabala L, Brodribb TJ, Zhou M, Shabala S (2019) Understanding physiological and morphological traits contributing to drought tolerance in barley. J Agron Crop Sci 205:129–140

    Article  CAS  Google Scholar 

  • He Y, Zhang Y, Chen L, Wu C, Luo Q, Zhang F, Wei Q, Li K, Chang J, Yang G, He G (2017) A member of the 14-3-3 gene family in Brachypodium distachyon, BdGF14d, confers salt tolerance in transgenic tobacco plants. Front Plant Sci 8:340

    Article  PubMed  PubMed Central  Google Scholar 

  • Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125:189–198

    Article  CAS  PubMed  Google Scholar 

  • Hloušková P, Černý M, Kořínková N, Luklová M, Minguet EG, Brzobohatý B, Galuszka P, Bergougnoux V (2019) Affinity chromatography revealed 14-3-3 interactome of tomato (Solanum lycopersicum L.) during blue light-induced de-etiolation. J Proteom 193:44–61

    Article  Google Scholar 

  • Jaiswal DK, Mishra P, Subba P, Rathi D, Chakraborty S, Chakraborty N (2014) Membrane-associated proteomics of chickpea identifies Sad1/UNC-84 protein (CaSUN1), a novel component of dehydration signaling. Sci Rep 4:4177

    Article  PubMed  PubMed Central  Google Scholar 

  • Jung C, Jun SS, Sang WH, Yeon JK, Chung HK, Sang IS, Baek HN, Yang DC, Cheong JJ (2008) Overexpression of AtMYB44 enhances stomatal closure to confer abiotic stress tolerance in transgenic Arabidopsis. Plant Physiol 146:623–635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karaba A, Dixit S, Greco R, Aharoni A, Trijatmiko KR, Marsch-Martinez N, Krishnan A, Nataraja KN, Udayakumar M, Pereira A (2007) Improvement of water use efficiency in rice by expression of HARDY, an Arabidopsis drought and salt tolerance gene. Proc Natl Acad Sci USA 104:15270–15275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar M, Yusuf MA, Yadav P, Narayan S, Kumar M (2019) Overexpression of chickpea defensin gene confers tolerance to water-deficit stress in Arabidopsis thaliana. Front Plant Sci 10:290

    Article  PubMed  PubMed Central  Google Scholar 

  • Laxa M, Liebthal M, Telman W, Chibani K, Dietz KJ (2019) The role of the plant antioxidant system in drought tolerance. Antioxidants 8:94

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lescot M, Déhais P, Thijs G, Marchal K, Moreau Y, Peer VDY, Rouzé P, Rombauts S (2002) PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res 30:325–327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Y, Chen Q, Nan H, Li X, Lu S, Zhao X, Liu B, Guo C, Kong F, Cao D (2017) Overexpression of GmFDL19 enhances tolerance to drought and salt stresses in soybean. PLoS ONE 12:e0179554

    Article  PubMed  PubMed Central  Google Scholar 

  • Lindberg J, Nabbie F, Milliot J, Smith R, Tettamanzi MC, Peethambaran B (2014) 14-3-3λ Affects production of a sinapoyl derivative in lignin biosynthesis during drought stress in Arabidopsis Thaliana. Univers J Plant Sci 2(4):77–85

    Article  CAS  Google Scholar 

  • Liu Y, He C (2016) Regulation of plant reactive oxygen species (ROS) in stress responses: learning from AtRBOHD. Plant Cell Rep 35:995–1007

    Article  CAS  PubMed  Google Scholar 

  • Liu JH, Nada K, Honda C, Kitashiba H, Wen XP, Pang XM, Moriguchi T (2006) Polyamine biosynthesis of apple callus under salt stress: importance of the arginine decarboxylase pathway in stress response. J Exp Bot 57:2589–2599

    Article  CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Łukaszewicz M, Matysiak-Kata I, Aksamit A, Oszmiański J, Szopa J (2002) 14-3-3 Protein regulation of the antioxidant capacity of transgenic potato tubers. Plant Sci 163:125–130

    Article  Google Scholar 

  • Mashaki KM, Garg V, Ghomi AAN, Kudapa H, Chitikineni A, Nezhad KZ, Yamchi A, Soltanloo H, Varshney RK, Thudi M (2018) RNA-Seq analysis revealed genes associated with drought stress response in kabuli chickpea (Cicer arietinum L.). PLoS ONE 13:e0199774

    Article  Google Scholar 

  • Mazel A, Leshem Y, Tiwari BS, Levine A (2004) Induction of salt and osmotic stress tolerance by overexpression of an intracellular vesicle trafficking protein AtRab7 (AtRabG3e). Plant Physiol 134:118–128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22:867–880

    CAS  Google Scholar 

  • Nakashima K, Ito Y, Yamaguchi-Shinozaki K (2009) Transcriptional regulatory networks in response to abiotic stresses in Arabidopsis and grasses. Plant Physiol 149:88–95

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nankishore A, Farrell AD (2016) The response of contrasting tomato genotypes to combined heat and drought stress. J Plant Physiol 202:75–82

    Article  CAS  PubMed  Google Scholar 

  • Nautiyal CS, Srivastava S, Chauhan PS, Seem K, Mishra A, Sopory SK (2013) Plant growth-promoting bacteria Bacillus amyloliquefaciens NBRISN13 modulates gene expression profile of leaf and rhizosphere community in rice during salt stress. Plant Physiol Biochem 66:1–9

    Article  CAS  PubMed  Google Scholar 

  • Oh CS, Pedley KF, Martin GB (2010) Tomato 14-3-3 protein 7 positively regulates immunity-associated programmed cell death by enhancing protein abundance and signaling ability of MAPKKKα. Plant Cell 22:260–272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Okada K, Shimura Y (1990) Reversible root tip rotation in Arabidopsis seedlings induced by obstacle-touching stimulus. Science 250:274–276

    Article  CAS  PubMed  Google Scholar 

  • Qiu Y, Yu D (2009) Over-expression of the stress-induced OsWRKY45 enhances disease resistance and drought tolerance in Arabidopsis. Environ Exp Bot 65:35–47

    Article  CAS  Google Scholar 

  • Rao DE, Chaitanya KV (2016) Photosynthesis and antioxidative defense mechanisms in deciphering drought stress tolerance of crop plants. Biol Plant 60:201–218

    Article  CAS  Google Scholar 

  • Ren YR, Yang YY, Zhang R, You CX, Zhao Q, Hao YJ (2019) MdGRF11, an apple 14-3-3 protein, acts as a positive regulator of drought and salt tolerance. Plant Sci 288:110219

    Article  CAS  PubMed  Google Scholar 

  • Rittinger K, Budman J, Xu J, Volinia S, Cantley LC, Smerdon SJ, Gamblin SJ, Yaffe MB (1999) Structural analysis of 14-3-3 phosphopeptide complexes identifies a dual role for the nuclear export signal of 14-3-3 in ligand binding. Mol Cell 4:153–166

    Article  CAS  PubMed  Google Scholar 

  • Rushton PJ, Reinstädler A, Lipka V, Lippok B, Somssich IE (2002) Synthetic plant promoters containing defined regulatory elements provide novel insights into pathogen- and wound-induced signaling. Plant Cell 14:749–762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi L, Ren A, Zhu J, Yu H, Jiang A, Zheng H, Zhao M (2019) 14-3-3 Proteins: a window for a deeper understanding of fungal metabolism and development. World J Microbiol Biotechnol 35:24

    Article  PubMed  Google Scholar 

  • Singh R, Naskar J, Pathre UV, Shirke PA (2014) Reflectance and cyclic electron flow as an indicator of drought stress in cotton (Gossypiumhirsutum). Photochem Photobiol 90:544–551

    Article  CAS  PubMed  Google Scholar 

  • Sun X, Luo X, Sun M, Chen C, Ding X, Wang X, Yang S, Yu Q, Jia B, Ji W, Cai H, Zhu Y (2014) A glycine soja 14-3-3 protein gsgf14o participates in stomatal and root hair development and drought tolerance in Arabidopsis thaliana. Plant Cell Physiol 55:99–118

    Article  CAS  PubMed  Google Scholar 

  • Tiwari S, Lata C, Chauhan PS, Nautiyal CS (2016) Pseudomonas putida attunes morphophysiological, biochemical and molecular responses in Cicer arietinum L. during drought stress and recovery. Plant Physiol Biochem 99:108–117

    Article  CAS  PubMed  Google Scholar 

  • Tiwari S, Lata C, Chauhan PS, Prasad V, Prasad M (2017) A functional genomic perspective on drought signalling and its crosstalk with phytohormone-mediated signalling pathways in plants. Curr Genom 18:469–482

    Article  CAS  Google Scholar 

  • Visconti S, D’Ambrosio C, Fiorillo A, Arena S, Muzi C, Zottini M, Aducci P, Marra M, Scaloni A, Camoni L (2019) Overexpression of 14-3-3 proteins enhances cold tolerance and increases levels of stress-responsive proteins of Arabidopsis plants. Plant Sci 289:110215

    Article  CAS  PubMed  Google Scholar 

  • Wan J, Griffiths R, Ying J, McCourt P, Huang Y (2009) Development of drought-tolerant canola (Brassica napus L.) through genetic modulation of ABA-mediated stomatal responses. Crop Sci 49:1539–1554

    Article  CAS  Google Scholar 

  • Wang W, Shakes DC (1996) Molecular evolution of the 14-3-3 protein family. J Mol Evol 43:384–398

    Article  CAS  PubMed  Google Scholar 

  • Xiong L, Schumaker KS, Zhu JK (2002) Cell signalling during cold, drought, and salt stress. Plant Cell 14:165–183

    Article  Google Scholar 

  • Xu WF, Shi WM (2006) Expression profiling of the 14-3-3 gene family in response to salt stress and potassium and iron deficiencies in young tomato (Solanum lycopersicum) roots: analysis by real-time RT-PCR. Ann Bot 98:965–974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu Z, Zhou G, Shimizu H (2010) Plant responses to drought and rewatering. Plant Signal Behav 5:649–654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamaguchi-Shinozaki K, Shinozaki K (2005) Organization of cis-acting regulatory elements in osmotic and cold-stress-responsive promoters. Trends Plant Sci 10:88–94

    Article  CAS  PubMed  Google Scholar 

  • Yan J, He C, Wang J, Mao Z, Holaday SA, Allen RD, Zhang H (2004) Overexpression of the Arabidopsis 14-3-3 protein GF14λ in cotton leads to a “stay-green” phenotype and improves stress tolerance under moderate drought conditions. Plant Cell Physiol 45:1007–1014

    Article  CAS  PubMed  Google Scholar 

  • Yan Q, Hou H, Singer SD, Yan X, Guo R, Wang X (2014) The grape VvMBF1 gene improves drought stress tolerance in transgenic Arabidopsis thaliana. Plant Cell Tissue Organ Cult 118:571–582

    Article  CAS  Google Scholar 

  • Yan J, Aznar A, Chalvin C, Birdseye DS, Baidoo EEK, Eudes A, Shih PM, Loqué D, Zhang A, Scheller HV (2018) Increased drought tolerance in plants engineered for low lignin and low xylan content. Biotechnol Biofuels 11:195

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang L, You J, Wang Y, Li J, Quan W, Yin M, Wang Q, Chan Z (2017) Systematic analysis of the G-box factor 14-3-3 gene family and functional characterization of GF14a in Brachypodium distachyon. Plant Physiol Biochem 117:1–11

    Article  PubMed  Google Scholar 

  • Yao P-F, Li C-L, Zhao X-R, Li M-F, Zhao H-X, Guo J-Y, Cai Y, Chen Y, Wu Q (2017) Overexpression of a tartary buckwheat gene, FtbHLH3, enhances drought/oxidative stress tolerance in transgenic Arabidopsis. Front Plant Sci 8:625

    Article  PubMed  PubMed Central  Google Scholar 

  • Yashvardhini N, Bhattacharya S, Chaudhuri S, Sengupta DN (2018) Molecular characterization of the 14-3-3 gene family in rice and its expression studies under abiotic stress. Planta 247:229–253

    Article  CAS  PubMed  Google Scholar 

  • Yoshida T, Fujita Y, Maruyama K, Mogami J, Todaka D, Shinozaki K, Yamaguchi-Shinozaki K (2015) Four Arabidopsis AREB/ABF transcription factors function predominantly in gene expression downstream of SnRK2 kinases in abscisic acid signaling in response to osmotic stress. Plant Cell Environ 38:35–49

    Article  CAS  PubMed  Google Scholar 

  • Yu X, Liu Y, Wang S, Tao Y, Wang Z, Shu Y, Peng H, Mijiti A, Ze W, Zhang H, Ma H (2016a) CarNAC4, a NAC-type chickpea transcription factor conferring enhanced drought and salt stress tolerances in Arabidopsis. Plant Cell Rep 35:613–627

    Article  CAS  PubMed  Google Scholar 

  • Yu YT, Wu Z, Lu K, BiC LS, Wang XF, Zhang DP (2016b) Overexpression of the MYB37 transcription factor enhances abscisic acid sensitivity, and improves both drought tolerance and seed productivity in Arabidopsis thaliana. Plant Mol Biol 90:267–279

    Article  CAS  PubMed  Google Scholar 

  • Zhang A, Liu D, Hua C, Yan A, Liu B, Wu M, Liu Y, Huang L, Ali I, Gan Y (2016) The Arabidopsis gene zinc finger protein 3(ZFP3) is involved in salt stress and osmotic stress response. PLoS ONE 11:e0168367

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhao Y, Yang Z, Ding Y, Liu L, Han X, Zhan J, Wei X, Diao Y, Qin W, Wang P, Liu P, Sajjad M, Zhang X, Ge X (2019) Over-expression of an R2R3 MYB Gene, GhMYB73, increases tolerance to salt stress in transgenic Arabidopsis. Plant Sci 286:28–36

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Director, CSIR National Botanical Research Institute for providing facilities and support during the study. This work is supported by the CSIR-Network (MLP0048 and MLP0049) and an in-house project (OLP109) funded by the Council of Scientific and Industrial Research, New Delhi, India.

Author information

Authors and Affiliations

Authors

Contributions

PSC and LA conceived and co-ordinated the study. SG, SM, MK, and AA carried out the experiments and analyzed the data. SKM, ST, and SN assisted in experiments and discussed the results. SG, ST, SM, LA, and PSC wrote and edited the manuscript.

Corresponding author

Correspondence to Puneet Singh Chauhan.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Handling Editor: Alexander Christmann.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 137 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, S., Misra, S., Kumar, M. et al. Enhancement of Drought Tolerance in Transgenic Arabidopsis thaliana Plants Overexpressing Chickpea Ca14-3-3 Gene. J Plant Growth Regul 42, 1544–1557 (2023). https://doi.org/10.1007/s00344-022-10639-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00344-022-10639-9

Keywords

Navigation