Skip to main content

Advertisement

Log in

Overexpression of a maize dehydrin gene, ZmDHN2b, in tobacco enhances tolerance to low temperature

  • Original paper
  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Dehydrins, a subfamily of group 2 LEA proteins, are intrinsically unstructured plant proteins that accumulate in the late stages of seed development and in vegetative tissues subjected to water deficit, salinity, low temperature, or abscisic acid treatment. In this study, we isolated and characterized ZmDHN2b, a maize dehydrin gene. The genomic organization of the ZmDHN2b gene and its expression in maize seedlings were analyzed. To investigate the function of ZmDHN2b, we generated transgenic tobacco plants constitutively overexpressing ZmDHN2b. Ectopic expression of ZmDHN2b in tobacco accelerated seed germination and seedling growth at 15°C. Furthermore, ZmDHN2b-overexpressing lines had lower levels of cold-induced malondialdehyde and less electrolyte leakage than wild-type tobacco at 4°C. These results demonstrated that ZmDHN2b was involved in plant responses to low temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ABA:

Abscisic acid

DHN:

Dehydrin

GA:

Gibberellic acid

H2O2 :

Hydrogen peroxide

JA:

Jasmonic acid

LEA:

Late embryogenesis abundant

ORF:

Open reading frame

PCR:

Polymerase chain reaction

pI:

Isoelectric point

SA:

Salicylic acid

SDS-PAGE:

Sodium dodecyl sulfate–polyacrylamide gel electrophoresis

TBA:

Thiobarbituric acid

TCA:

Trichloroacetic acid

WT:

Wild type

References

  • Allagulova CR, Gimalov FR, Shakirova FM, Vakhitov VA (2003) The plant dehydrins: structure and putative functions. Biochemistry (Mosc) 68:945–951

    Article  CAS  Google Scholar 

  • Alsheikh MK, Svensson JT, Randall SK (2005) Phosphorylation regulated ion-binding is a property shared by the acidic subclass dehydrins. Plant Cell Environ 28:1114–1122

    Article  CAS  Google Scholar 

  • Bae EK, Lee H, Lee JS, Noh EW (2009) Differential expression of a poplar SK2-type dehydrin gene in response to various stresses. BMB Rep 42:439–443

    Article  PubMed  CAS  Google Scholar 

  • Battaglia M, Olvera-Carrillo Y, Garciarrubio A, Campos F, Covarrubias AA (2008) The enigmatic LEA proteins and other hydrophilins. Plant Physiol 148:6–24

    Article  PubMed  CAS  Google Scholar 

  • Borovskii GB, Stupnikova IV, Antipina AI, Vladimirova SV, Voinikov VK (2002) Accumulation of dehydrin-like proteins in the mitochondria of cereals in response to cold, freezing, drought and ABA treatment. BMC Plant Biol 2:5

    Article  PubMed  Google Scholar 

  • Campbell SA, Close TJ (1997) Dehydrins: genes, proteins, and associations with phenotypic traits. New Phytol 137:61–74

    Article  CAS  Google Scholar 

  • Close TJ (1996) Dehydrins: emergence of a biochemical role of a family of plant dehydration proteins. Physiol Plant 97:795–803

    Article  CAS  Google Scholar 

  • Close TJ (1997) Dehydrins: a commonalty in the response of plants to dehydration and low temperature. Physiol Plant 100:291–296

    Article  CAS  Google Scholar 

  • Danyluk J, Perron A, Houde M, Limin A, Fowler B, Benhamou N, Sarhan F (1998) Accumulation of an acidic dehydrin in the vicinity of the plasma membrane during cold acclimation of wheat. Plant Cell 10:623–638

    Article  PubMed  CAS  Google Scholar 

  • Goday A, Jensen AB, Culianez-Macia FA, Mar Alba M, Figueras M, Serratosa J, Torrent M, Pages M (1994) The maize abscisic acid-responsive protein Rab17 is located in the nucleus and interacts with nuclear localization signals. Plant Cell 6:351–360

    Article  PubMed  CAS  Google Scholar 

  • Hara M, Terashima S, Fukaya T, Kuboi T (2003) Enhancement of cold tolerance and inhibition of lipid peroxidation by citrus dehydrin in transgenic tobacco. Planta 217:290–298

    PubMed  CAS  Google Scholar 

  • Hara M, Fujinaga M, Kuboi T (2004) Radical scavenging activity and oxidative modification of citrus dehydrin. Plant Physiol Biochem 42:657–662

    Article  PubMed  CAS  Google Scholar 

  • Hara M, Shinoda Y, Tanaka Y, Kuboi T (2009) DNA binding of citrus dehydrin promoted by zinc ion. Plant Cell Environ 32:532–541

    Article  PubMed  CAS  Google Scholar 

  • Heyen BJ, Alsheikh MK, Smith EA, Torvik CF, Seals DF, Randall SK (2002) The calcium-binding activity of a vacuole-associated, dehydrin-like protein is regulated by phosphorylation. Plant Physiol 130:675–687

    Article  PubMed  CAS  Google Scholar 

  • Houde M, Dallaire S, N’Dong D, Sarhan F (2004) Overexpression of the acidic dehydrin WCOR410 improves freezing tolerance in transgenic strawberry leaves. Plant Biotechnol J 2:381–387

    Article  PubMed  CAS  Google Scholar 

  • Jensen AB, Goday A, Figueras M, Jessop AC, Pages M (1998) Phosphorylation mediates the nuclear targeting of the maize Rab17 protein. Plant J 13:691–697

    Article  PubMed  CAS  Google Scholar 

  • Koag MC, Fenton RD, Wilkens S, Close TJ (2003) The binding of maize DHN1 to lipid vesicles. Gain of structure and lipid specificity. Plant Physiol 131:309–316

    Article  PubMed  CAS  Google Scholar 

  • Koag MC, Wilkens S, Fenton RD, Resnik J, Vo E, Close TJ (2009) The K-segment of maize DHN1 mediates binding to anionic phospholipid vesicles and concomitant structural changes. Plant Physiol 150:1503–1514

    Article  PubMed  CAS  Google Scholar 

  • Kovacs D, Kalmar E, Torok Z, Tompa P (2008) Chaperone activity of ERD10 and ERD14, two disordered stress-related plant proteins. Plant Physiol 147:381–390

    Article  PubMed  CAS  Google Scholar 

  • Kruger C, Berkowitz O, Stephan UW, Hell R (2002) A metal-binding member of the late embryogenesis abundant protein family transports iron in the phloem of Ricinus communis L. J Biol Chem 277:25062–25069

    Article  PubMed  CAS  Google Scholar 

  • Li R, Brawley SH, Vakhitov VA (1998) Proteins immunologically related to dehydrins in fucoid algae. J Phycol 34:642–650

    Article  CAS  Google Scholar 

  • Li D, Shen J, Wu T, Xu Y, Zong X, Li D, Shu H (2008) Overexpression of the apple alcohol acyltransferase gene alters the profile of volatile blends in transgenic tobacco leaves. Physiol Plant 134:394–402

    Article  PubMed  CAS  Google Scholar 

  • Liu L, Hu X, Song J, Zong X, Li D, Li D (2009) Over-expression of a Zea mays L. protein phosphatase 2C gene (ZmPP2C) in Arabidopsis thaliana decreases tolerance to salt and drought. J Plant Physiol 166:531–542

    Article  PubMed  CAS  Google Scholar 

  • Mehta PA, Rebala KC, Venkataraman G, Parida A (2009) A diurnally regulated dehydrin from Avicennia marina that shows nucleo-cytoplasmic localization and is phosphorylated by Casein kinase II in vitro. Plant Physiol Biochem 47:701–709

    Article  PubMed  CAS  Google Scholar 

  • Mtwisha L, Brandt W, McCready S, Lindsey GG (1998) HSP 12 is a LEA-like protein in Saccharomyces cerevisiae. Plant Mol Biol 37:513–521

    Article  PubMed  CAS  Google Scholar 

  • Mueller JK, Heckathorn SA, Fernando D (2003) Identification of a chloroplast dehydrin in leaves of mature plants. Int J Plant Sci 164:535–542

    Article  CAS  Google Scholar 

  • Plana M, Itarte E, Eritja R, Goday A, Pages M, Martinez MC (1991) Phosphorylation of maize RAB-17 protein by casein kinase 2. J Biol Chem 266:22510–22514

    PubMed  CAS  Google Scholar 

  • Puhakainen T, Hess MW, Makela P, Svensson J, Heino P, Palva ET (2004) Overexpression of multiple dehydrin genes enhances tolerance to freezing stress in Arabidopsis. Plant Mol Biol 54:743–753

    Article  PubMed  CAS  Google Scholar 

  • Riera M, Figueras M, Lopez C, Goday A, Pages M (2004) Protein kinase CK2 modulates developmental functions of the abscisic acid responsive protein Rab17 from maize. Proc Natl Acad Sci USA 101:9879–9884

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez EM, Svensson JT, Malatrasi M, Choi DW, Close TJ (2005) Barley Dhn13 encodes a KS-type dehydrin with constitutive and stress responsive expression. Theor Appl Genet 110:852–858

    Article  PubMed  CAS  Google Scholar 

  • Rorat T (2006) Plant dehydrins–tissue location, structure and function. Cell Mol Biol Lett 11:536–556

    Article  PubMed  CAS  Google Scholar 

  • Rorat T, Grygorowicz WJ, Irzykowski W, Rey P (2004) Expression of KS-type dehydrins is primarily regulated by factors related to organ type and leaf developmental stage during vegetative growth. Planta 218:878–885

    Article  PubMed  CAS  Google Scholar 

  • Rorat T, Szabala BM, Grygorowicz WJ, Wojtowicz B, Yin Z, Rey P (2006) Expression of SK3-type dehydrin in transporting organs is associated with cold acclimation in Solanum species. Planta 224:205–221

    Article  PubMed  CAS  Google Scholar 

  • Saavedra L, Svensson J, Carballo V, Izmendi D, Welin B, Vidal S (2006) A dehydrin gene in Physcomitrella patens is required for salt and osmotic stress tolerance. Plant J 45:237–249

    Article  PubMed  CAS  Google Scholar 

  • Sanchez-Ballesta MT, Jesus Rodrigo M, Teresa Lafuente M, Granell A, Zacarias L (2004) Dehydrin from citrus, which confers in vitro dehydration and freezing protection activity, is constitutive and highly expressed in the flavedo of fruit but responsive to cold and water stress in leaves. J Agric Food Chem 57:1950–1957

    Article  Google Scholar 

  • Schnable PS, Ware D, Fulton RS, Stein JC, Wei F, Pasternak S, Liang C, Zhang J, Fulton L, Graves TA et al (2009) The B73 maize genome: complexity, diversity, and dynamics. Science 326:1112–1115

    Article  PubMed  CAS  Google Scholar 

  • Shih MD, Hoekstra FA, Hsing YIC (2008) Late embryogenesis abundant proteins. Adv Bot Res 48:211–255

    Article  CAS  Google Scholar 

  • Sun X, Yuan S, Lin HH (2006) Salicylic acid decreases the levels of dehydrin-like proteins in Tibetan hulless barley leaves under water stress. Z Naturforsch C 61:245–250

    PubMed  CAS  Google Scholar 

  • Thomashow MF (1999) Plant cold acclimation: freezing tolerance genes and regulatory mechanisms. Annu Rev Plant Physiol Plant Mol Biol 50:571–599

    Article  PubMed  CAS  Google Scholar 

  • Tunnacliffe A, Wise MJ (2007) The continuing conundrum of the LEA proteins. Naturwissenschaften 94:791–812

    Article  PubMed  CAS  Google Scholar 

  • Vilardell J, Mundy J, Stilling B, Leroux B, Pla M, Freyssinet G, Pages M (1991) Regulation of the maize rab17 gene promoter in transgenic heterologous systems. Plant Mol Biol 17:985–993

    Article  PubMed  CAS  Google Scholar 

  • Welling A, Rinne P, Vihera-Aarnio A, Kontunen-Soppela S, Heino P, Palva ET (2004) Photoperiod and temperature differentially regulate the expression of two dehydrin genes during overwintering of birch (Betula pubescens Ehrh.). J Exp Bot 55:507–516

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Li J, Yu F, Cong L, Wang L, Burkard G, Chai T (2006) Cloning and expression analysis of SKn-type dehydrin gene from bean in response to heavy metals. Mol Biotechnol 32:205–218

    Article  PubMed  CAS  Google Scholar 

  • Zhu B, Choi DW, Fenton R, Close TJ (2000) Expression of the barley dehydrin multigene family and the development of freezing tolerance. Mol Gen Genet 264:145–153

    Article  PubMed  CAS  Google Scholar 

  • Zong XJ, Li DP, Gu LK, Li DQ, Liu LX, Hu XL (2009) Abscisic acid and hydrogen peroxide induce a novel maize group C MAP kinase gene, ZmMPK7, which is responsible for the removal of reactive oxygen species. Planta 229:485–495

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Nos. 31071337 and 30871457) and the State Key Basic Research and Development Plan of China (No. 2009CB118500) and also was supported by the Program for Changjiang Scholars and Innovative Research Team in University (No. IRT0635).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dequan Li.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 350 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xing, X., Liu, Y., Kong, X. et al. Overexpression of a maize dehydrin gene, ZmDHN2b, in tobacco enhances tolerance to low temperature. Plant Growth Regul 65, 109–118 (2011). https://doi.org/10.1007/s10725-011-9580-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10725-011-9580-3

Keywords

Navigation