Skip to main content
Log in

Over-expression of the Peroxisomal Ascorbate Peroxidase (SbpAPX) Gene Cloned from Halophyte Salicornia brachiata Confers Salt and Drought Stress Tolerance in Transgenic Tobacco

  • Original Article
  • Published:
Marine Biotechnology Aims and scope Submit manuscript

Abstract

Salicornia brachiata Roxb., an extreme halophyte, is a naturally adapted higher plant model for additional gene resources to engineer salt tolerance in plants. Ascorbate peroxidase (APX) plays a key role in protecting plants against oxidative stress and thus confers abiotic stress tolerance. A full-length SbpAPX cDNA, encoding peroxisomal ascorbate peroxidase, was cloned from S. brachiata. The open reading frame encodes for a polypeptide of 287 amino acid residues (31.3-kDa protein). The deduced amino acid sequence of the SbpAPX gene showed characteristic peroxisomal targeting sequences (RKRAI) and a C-terminal hydrophobic region of 39 amino acid residues containing a transmembrane domain (TMD) of 23 amino acid residues. Northern blot analysis showed elevated SbpAPX transcript in response to salt, cold, abscisic acid and salicylic acid stress treatments. The SbpAPX gene was transformed to tobacco for their functional validation under stresses. Transgenic plants over-expressing SbpAPX gene showed enhanced salt and drought stress tolerance compared to wild-type plants. Transgenic plants showed enhanced vegetative growth and germination rate both under normal and stressed conditions. Present study revealed that the SbpAPX gene is a potential candidate, which not only confers abiotic stress tolerance to plants but also seems to be involved in plant growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alscher RG, Donahue JL, Cramer CL (1997) Reactive oxygen species and antioxidants: relationships in green cells. Physiol Plantarum 100:224–233

    Article  CAS  Google Scholar 

  • Asada K (1992) Ascorbate peroxidase—a hydrogen peroxide scavenging enzyme in plants. Physiol Plantarum 85:235–241

    Article  CAS  Google Scholar 

  • Asada K (1994) Production and action of active oxygen species in photosynthetic tissues. In: Foyer CH, Mullineaux PM (eds) Causes of photooxidative stress and amelioration of defense systems in plants. CRC Press, Boca Raton, FL, pp 77–104

    Google Scholar 

  • Asada K (1997) The role of ascorbate peroxidase and monodehydroascorbate reductase in H2O2 scavenging in plants. In: Scandalios JG (ed) Oxidative stress and the molecular biology of antioxidant defenses. Cold Spring Harbor Laboratory Press, New York, USA, pp 715–135

    Google Scholar 

  • Ashraf M (2009) Biotechnological approach of improving plant salt tolerance using antioxidants as markers. Biotechnol Adv 27:84–93

    Article  CAS  PubMed  Google Scholar 

  • Barba-Espin G, Diaz-Vivancos P, Job D, Belghazi M, Job C, Hernández JA (2011) Understanding the role of H2O2 during pea seed germination: a combined proteomic and hormone profiling approach. Plant Cell Environ 34:1907–1919

    Article  CAS  PubMed  Google Scholar 

  • Bohnert HJ, Sheveleva E (1998) Plant stress adaptations—making metabolism move. Curr Opin Plant Biol 3:267–274

    Article  Google Scholar 

  • Bonifacio A, Martins MO, Ribeiro CW, Fontenele AV, Carvalho FE, Margis–Pinheiro M, Silveira JA (2011) Role of peroxidases in the compensation of cytosolic ascorbate peroxidase knockdown in rice plants under abiotic stress. Plant Cell Environ 34:1705–1722

    Article  CAS  PubMed  Google Scholar 

  • Bradford MM (1976) Rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Bressan R, Bohnert H, Zhu JK (2009) Abiotic stress tolerance: from gene discovery in model organisms to crop improvement. Mol Plant 2:1–2

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bunkelmann JR, Trelease RN (1996) Ascorbate peroxidase: a prominent membrane protein in oilseed glyoxysomes. Plant Physiol 110:589–598

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chaturvedi AK, Mishra A, Tiwari V, Jha B (2012) Cloning and transcript analysis of type 2 metallothionein gene (SbMT-2) from extreme halophyte Salicornia brachiata and its heterologous expression in E. coli. Gene 499:280–287

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Wang H, Wang X, Cao A, Chen P (2006) Cloning and expression of peroxisomal ascorbate peroxidase gene from wheat. Mol Biol Rep 33:207–213

    Article  CAS  PubMed  Google Scholar 

  • Chomczynski P, Sacchi N (1987) Single-step method of RNA isolation by guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem 161:156–159

    Article  Google Scholar 

  • Corpas FJ, Gómez M, Hernández JA, delRío LA (1993) Metabolism of activated oxygen in peroxisomes from two Pisum sativum L. cultivars with different sensitivity to sodium chloride. J Plant Physiol 141:160–165

    Article  CAS  Google Scholar 

  • Dellaporta SL, Wood J, James BH (1983) A plant DNA minipreparation (version II). Plant Mol Biol Rep 1:19–21

    Article  CAS  Google Scholar 

  • delRío LA, Pastori GM, Palma JM, Sandalio LM, Sevilla F, Corpas FJ, Jiménez A, López-Huertas E, Hernández JA (1998) The activated oxygen role of peroxisomes in senescence. Plant Physiol 116:1195–1200

    Article  Google Scholar 

  • Díaz-Vivancos P, Rubio M, Mesonero V, Periago PM, Ros Barceló A, Martínez-Gómez P, Hernández JA (2006) The apoplastic antioxidant system in Prunus: response to plum pox virus. J Exp Bot 57:3813–3824

    Article  PubMed  Google Scholar 

  • Flowers TJ (2004) Improving crop salt tolerance. J Exp Bot 55:307–319

    Article  CAS  PubMed  Google Scholar 

  • Foyer CH, Lelandais M, Kunert KJ (1994) Photooxidative stress in plants. Physiol Plantarum 92:696–717

    Article  CAS  Google Scholar 

  • Gest N, Gautier H, Stevens R (2013) Ascorbate as seen through plant evolution: the rise of a successful molecule? J Exp Bot 64:33–53

    Article  CAS  PubMed  Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930

    Article  CAS  PubMed  Google Scholar 

  • Hajiboland R (2012) Effect of micronutrient deficiencies on plants stress responses. In: Ahmad P, Prasad MNV (eds) Abiotic stress responses in plants. Springer, New York, pp 283–329

    Chapter  Google Scholar 

  • Hasanuzzaman M, Hossain MA, daSilva JAT, Fujita M (2012) Plant response and tolerance to abiotic oxidative stress: antioxidant defense is a key factor. In: Venkateswarlu B, Shanker AK, Shanker C, Maheswari M (eds) Crop stress and its management: perspectives and strategies. Springer, Netherlands, pp 261–315

    Chapter  Google Scholar 

  • Hernández JA, Corpas FJ, Gómez M, delRío LA, Sevilla F (1993) Salt-induced oxidative stress mediated by activated oxygen species in pea leaf mitochondria. Physiol Plantarum 89:103–110

    Article  Google Scholar 

  • Hernández JA, Olmos E, Corpas FJ, Sevilla F, delRío LA (1995) Salt-induced oxidative stress in chloroplast of pea plants. Plant Science 105:151–167

    Article  Google Scholar 

  • Holsters M, DeWaele D, Depicker A, Messens E, Montagu MV, Schell J (1978) Transfection and transformation of Agrobacterium tumefaciens. Mol Gen Genet 163:181–187

    Article  CAS  PubMed  Google Scholar 

  • Horsch RB, Fry JE, Hoffman NL, Eichholtz D, Rogers SG, Fraley RT (1985) A simple and general method for transferring gene into plants. Science 227:1229–1232

    Article  CAS  Google Scholar 

  • Hu L, Li H, Pang H, Fu J (2012) Responses of antioxidant gene, protein and enzymes to salinity stress in two genotypes of perennial ryegrass (Lolium perenne) differing in salt tolerance. J Plant Physiol 169:146–156

    Article  CAS  PubMed  Google Scholar 

  • Ishikawa T, Sakai K, Takeda T, Yoshimura K, Shigeoka S (1996) cDNA encoding spinach stromal and thylakoid-bound ascorbate peroxidase, differing in the presence or absence of their 3′-coding regions. FEBS Lett 384:289–293

    Article  CAS  PubMed  Google Scholar 

  • Jha B, Sharma A, Mishra A (2011) Expression of SbGSTU (tau class glutathione S-transferase) gene isolated from Salicornia brachiata in tobacco for salt tolerance. Mol Biol Rep 38:4823–4832

    Article  CAS  PubMed  Google Scholar 

  • Jha B, Singh N, Mishra A (2012) Proteome profiling of seed storage proteins reveals the nutritional potential of Salicornia brachiata Roxb., an extreme halophyte. J Agric Food Chem 60:4320–4326

    Article  CAS  PubMed  Google Scholar 

  • Jha B, Mishra A, Jha A, Joshi M (2013) Developing transgenic Jatropha using the SbNHX1 gene from an extreme halophyte for cultivation in saline wasteland. PlosOne 8:e71136

  • Jiménez A, Hernandez JA, delRío LA, Sevilla F (1997) Evidence for the presence of the ascorbate-glutathione cycle in mitochondria and peroxisomes of pea leaves. Plant Physiol 114:275–284

    PubMed Central  PubMed  Google Scholar 

  • Jiménez A, Hernandez JA, Pastori G, delRío LA, Sevilla F (1998) Role of the ascorbate-glutathione cycle of mitochondria and peroxisomes in the senescence of pea leaves. Plant Physiol 118:1327–1335

    Article  PubMed Central  PubMed  Google Scholar 

  • Joshi M, Mishra A, Jha B (2011) Efficient genetic transformation of Jatropha curcas L. by microprojectile bombardment using embryo axes. Ind Crop Prod 33:67–77

    Article  CAS  Google Scholar 

  • Joshi M, Mishra A, Jha B (2012) NaCl plays a key role for in vitro micropropagation of Salicornia brachiata, an extreme halophyte. Ind Crops Prod 35:313–316

    Article  CAS  Google Scholar 

  • Karpinska B, Wisgle G, Karpinski S (2001) Antagonistic effects of hydrogen peroxide and glutathione on acclimation to excess excitation energy in Arabidopsis. IUBMB Life 50:21–26

    Article  Google Scholar 

  • Kavitha K, Venkataraman G, Parida A (2008) An oxidative and salinity stress induced peroxisomal ascorbate peroxidase from Avicennia marina: molecular and functional characterization. Plant Physiol Biochem 46:794–804

    Article  CAS  PubMed  Google Scholar 

  • Kosová K, Vítámvás P, Urban MO, Prášil IT (2013) Plant proteome responses to salinity stress—comparison of glycophytes and halophytes. Funct Plant Biol 40:775–786

    Google Scholar 

  • Laureau C, De Paepe R, Latouche G, Moreno–Chacón M, Finazzi G, Kuntz M, Cornic G, Streb P (2013) Plastid terminal oxidase (PTOX) has the potential to act as a safety valve for excess excitation energy in the alpine plant species Ranunculus glacialis L. Plant Cell Environ 36:1296–1310

    Article  CAS  PubMed  Google Scholar 

  • Li YJ, Hai RL, Du XH, Jiang XN, Lu H (2009) Over-expression of a Populus peroxisomal ascorbate peroxidase (PpAPX) gene in tobacco plants enhances stress tolerance. Plant Breed 128:404–410

    Article  CAS  Google Scholar 

  • Lin KH, Pu SF (2010) Tissue- and genotype-specific ascorbate peroxidase expression in sweet potato in response to salt stress. Biol Plantarum 54:664–670

    Article  CAS  Google Scholar 

  • Lisenbee CS, Heinze M, Trelease RN (2003) Peroxisomal ascorbate peroxidase resides within a subdomain of rough endoplasmic reticulum in wild-type Arabidopsis cells. Plant Physiol 132:870–882

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • López-Huertas E, Charlton WL, Johnson B, Graham IA, Baker A (2000) Stress induces peroxisome biogenesis genes. EMBO J 19:6770–6777

    Article  PubMed Central  PubMed  Google Scholar 

  • Mishra A, Jha B (2011) Antioxidant response of the microalga Dunaliella salina under salt stress. Bot Mar 54:195–199

    CAS  Google Scholar 

  • Mishra A, Joshi M, Jha B (2013) Oligosaccharide mass profiling of nutritionally important Salicornia brachiata, an extreme halophyte. Carbohydr Polym 92:1942–1945

    Article  CAS  PubMed  Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410

    Article  CAS  PubMed  Google Scholar 

  • Mullen RT, Lisenbee CS, Miernyk JA, Trelease RN (1999) Peroxisomal membrane ascorbate peroxidase is sorted to a membranous network that resembles a subdomain of the endoplasmic reticulum. The Plant Cell 11:2167–2185

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mullen RT, Trelease RN (2000) The sorting signals for peroxisomal membrane-bound ascorbate peroxidase are within its C-terminal tail. J Biolo Chem 275:16337–16344

    Article  CAS  Google Scholar 

  • Munné-Bosch S, Queval G, Foyer CH (2013) The impact of global change factors on redox signaling underpinning stress tolerance. Plant Physiol 161:5–19

    Article  PubMed Central  PubMed  Google Scholar 

  • Noctor G, Foyer CH (1998) Ascorbate and glutathione: keeping active oxygen under control. Annu Rev Plant Physiol Plant Mol Biol 49:249–279

    Article  CAS  PubMed  Google Scholar 

  • Pandey S, Mishra A, Patel MK, Jha B (2013) An efficient method for Agrobacterium-mediated genetic transformation and plant regeneration in cumin (Cuminum cyminum L.). Appl Biochem Biotechnol 171:1–9

    Google Scholar 

  • Ray PD, Huang BW, Tsuji Y (2012) Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cell Signal 24:981–990

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ros Barceló A, Gómez-Ros LV, Ferrer MA, Hernández JA (2006) The apoplastic antioxidant enzymatic system in the wood-forming tissues of trees. Trees-Struct Funct 20:145–156

    Article  Google Scholar 

  • Sarowar S, Kim EN, Kim YJ, Ok SH, Kim KD, Hwang BK, Shin JS (2005) Overexpression of a pepper ascorbate peroxidase-like 1 gene in tobacco plants enhances tolerance to oxidative stress and pathogens. Plant Sci 169:55–63

    Article  CAS  Google Scholar 

  • Scandalios JG (1993) Oxygen stress and superoxide dismutase. Plant Physiol 101:7–12

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sharma P, Jha AB, Dubey RS, Pessarakli M (2012) Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J Bot Article ID:217037

  • Shi WM, Muramoto Y, Ueda A, Takabe T (2001) Cloning of peroxisomal ascorbate peroxidase gene from barley and enhanced thermotolerance by overexpressing in Arabidopsis thaliana. Gene 273:23–27

    Article  CAS  PubMed  Google Scholar 

  • Singh N, Mishra A, Joshi M, Jha B (2010) Microprojectile bombardment mediated genetic transformation of embryo axes and plant regeneration in cumin (Cuminum cyminum L.). Plant Cell Tiss Organ Cult 103:1–6

    Article  Google Scholar 

  • Suzuki N, Koussevitzky S, Mittler R, Miller G (2012) ROS and redox signalling in the response of plants to abiotic stress. Plant Cell Environ 35:259–270

    Article  CAS  PubMed  Google Scholar 

  • Tan M, Lu J, Zhang A, Hu B, Zhu X, Li W (2011) The distribution and cooperation of antioxidant (iso) enzymes and antioxidants in different subcellular compartments in maize leaves during water stress. J Plant Growth Regul 30:255–271

    Article  CAS  Google Scholar 

  • Tewari RK, Hadacek F, Sassmann S, Lang I (2013) Iron deprivation-induced reactive oxygen species generation leads to non-autolytic PCD in Brassica napus leaves. Environ Exp Bot 91:74–83

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wang J, Zeng Q, Zhu J, Liu G, Tang H (2013) Dissimilarity of ascorbate–glutathione (AsA–GSH) cycle mechanism in two rice (Oryza sativa L.) cultivars under experimental free-air ozone exposure. Agric Ecosyst Environ 165:39–49

    Article  CAS  Google Scholar 

  • Wang J, Zhang H, Allen RD (1999) Overexpression of an Arabidopsis peroximal ascorbate gene increases protection against oxidative stress. Plant Cell Physiol 40:725–732

    Article  CAS  PubMed  Google Scholar 

  • Wei ZF, Luo M, Zhao CJ, Li CY, Gu CB, Wang W, Zu YG, Efferth T, Fu YJ (2013) UV-induced changes of active components and antioxidant activity in postharvest pigeon pea [Cajanus cajan (L.) Millsp.] leaves. J Agric Food Chem 61:1165–1171

    Article  CAS  PubMed  Google Scholar 

  • Xiong L, Zhu JK (2002) Molecular and genetic aspects of plant responses to osmotic stress. Plant Cell Environ 25:131–139

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi K, Mori H, Nishimura M (1995) A novel isoenzyme of ascorbate peroxidase localized on glyoxysomal and leaf peroxisomal membranes in pumpkin. Plant Cell Physiol 36:1157–1162

    CAS  PubMed  Google Scholar 

  • Yan N, Xu XF, Wang ZD, Huang JZ, Guo DP (2013) Interactive effects of temperature and light intensity on photosynthesis and antioxidant enzyme activity in Zizania latifolia Turcz. plants. Photosynthetica 51:127–138

    Article  CAS  Google Scholar 

  • Zhang H, Wang J, Nickel U, Allen RD, Goodman HM (1997) Cloning and expression of an Arabidopsis gene encoding a putative peroxisomal ascorbate peroxidase. Plant Mol Biol 34:967–971

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, Zhang Q, Wu J, Zheng X, Zheng S, Sun X, Qiu Q, Lu T (2013) Gene knockout study reveals that cytosolic ascorbate peroxidase 2 (OsAPX2) plays a critical role in growth and reproduction in rice under drought, salt and cold stresses. PloS one 8:e57472

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The financial support received from CSIR, New Delhi (BSC0107–PlaGen) for carrying out this study is thankfully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bhavanath Jha.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 4864 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singh, N., Mishra, A. & Jha, B. Over-expression of the Peroxisomal Ascorbate Peroxidase (SbpAPX) Gene Cloned from Halophyte Salicornia brachiata Confers Salt and Drought Stress Tolerance in Transgenic Tobacco. Mar Biotechnol 16, 321–332 (2014). https://doi.org/10.1007/s10126-013-9548-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10126-013-9548-6

Keywords

Navigation