Skip to main content
Log in

Challenges for effective marker-assisted selection in plants

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

The basic principle of Marker-Assisted Selection (MAS) is to exploit Linkage Disequilibrium (LD) between markers and QTLs. With strong enough LD, MAS should in theory be easier, faster, cheaper, or more efficient than classical (phenotypic) selection. I briefly review the major MAS methods, describing some ‘success stories’ where MAS was applied successfully in the context of plant breeding, and detailing other cases where efficiency was not as high as expected. I discuss the possible causes explaining the difference between theoretical expectations and practical observations. Finally, I review the principal challenges and issues that must be tackled to make marker-assisted selection in plants more effective in the future, namely: managing and controlling QTL stability to apply MAS to complex traits, and integrating MAS in traditional breeding practices to make it more economically attractive and applicable in developing countries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahmadi N, Albar L, Pressoir G, Pinel A, Fargette D, Ghesquiere A (2001) Genetic basis and mapping of the resistance to Rice yellow mottle virus III Analysis of QTL efficiency in introgressed progenies confirmed the hypothesis of complementary epistasis between two resistance QTLs. Theor Appl Genet 103(6–7):1084–1092. doi:10.1007/s001220100642

    CAS  Google Scholar 

  • Ashikari M, Sakakibara H, Lin S, Yamamoto T, Takashi T, Nishimura A et al (2005) Cytokinin oxidase regulates rice grain production. Science 309:741–745. doi:10.1126/science.1113373

    Article  PubMed  CAS  Google Scholar 

  • Barloy D, Lemoine J, Abelard P, Tanguy AM, Rivoal R, Jahier J (2007) Marker-assisted pyramiding of two cereal cyst nematode resistance genes from Aegilops variabilis in wheat. Mol Breed 20(1):31–40. doi:10.1007/s11032-006-9070-x

    Article  CAS  Google Scholar 

  • Beckmann JS, Soller M (1983) Restriction fragment length polymorphisms in genetic-improvement - methodologies, mapping and costs. Theor Appl Genet 67(1):35–43. doi:10.1007/BF00303919

    Article  Google Scholar 

  • Benchimol LL, de Souza CL, de Souza AP (2005) Microsatellite-assisted backcross selection in maize. Genet Mol Biol 28(4):789–797. doi:10.1590/S1415-47572005000500022

    Article  Google Scholar 

  • Bernardo R (2001) What if we knew all the genes for a quantitative trait in hybrid crops? Crop Sci 41(1):1–4

    CAS  Google Scholar 

  • Bernardo R (2004) What proportion of declared QTL in plants are false? Theor Appl Genet 109(2):419–424. doi:10.1007/s00122-004-1639-3

    Article  PubMed  CAS  Google Scholar 

  • Bernardo R, Yu JM (2007) Prospects for genomewide selection for quantitative traits in maize. Crop Sci 47(3):1082–1090. doi:10.2135/cropsci2006.11.0690

    Article  Google Scholar 

  • Blanc G, Charcosset A, Mangin B, Gallais A, Moreau L (2006) Connected populations for detecting quantitative trait loci and testing for epistasis: an application in maize. Theor Appl Genet 113(2):206–224

    Article  PubMed  CAS  Google Scholar 

  • Boitard S, Abdallah J, de Rochambeau H, Cierco-Ayrolles C, Mangin B (2006) Linkage disequilibrium interval mapping of quantitative trait loci. BMC Genomics 7:54. doi:10.1186/1471-2164-7-54

    Google Scholar 

  • Bonnett DG, Rebetzke GJ, Spielmeyer W (2005) Strategies for efficient implementation of molecular markers in wheat breeding. Mol Breed 15(1):75–85. doi:10.1007/s11032-004-2734-5

    Article  CAS  Google Scholar 

  • Bouchez A, Hospital F, Causse M, Gallais A, Charcosset A (2002) Marker assisted introgression of favorable alleles at quantitative trait loci between maize elite lines. Genetics 162:1945–1959

    PubMed  CAS  Google Scholar 

  • Canady MA, Meglic V, Chetelat RT (2005) A library of Solanum lycopersicoides introgression lines in cultivated tomato. Genome 48(4):685–697. doi:10.1139/g05-032

    Article  PubMed  CAS  Google Scholar 

  • Causse M, Chaib J, Lecomte L, Buret M, Hospital F (2007) Both additivity and epistasis control the genetic variation for fruit quality traits in tomato. Theor Appl Genet 115(3):429–442

    Article  PubMed  CAS  Google Scholar 

  • Cerenak A, Satovic Z, Javornik B (2006) Genetic mapping of hop (Humulus lupulus L.) applied to the detection of QTLs for alpha-acid content. Genome 49(5):485–494. doi:10.1139/G06-007

    Google Scholar 

  • Chaib J, Lecomte L, Buret M, Causse M (2006) Stability over genetic backgrounds, generations and years of quantitative trait locus (QTLs) for organoleptic quality in tomato. Theor Appl Genet 112(5):934–944

    Google Scholar 

  • Crepieux S, Lebreton C, Servin B, Charmet G (2004) Quantitative trait loci (QTL) detection in multicross inbred designs: Recovering QTL identical-by-descent status information from marker data. Genetics 168(3):1737–1749. doi:10.1534/genetics.104.028993

    Article  PubMed  CAS  Google Scholar 

  • Crow JF (1993) Galton, Francis—count and measure and count. Genetics 135(1):1–4

    PubMed  CAS  Google Scholar 

  • Doebley J (2004) The genetics of maize evolution. Annu Rev Genet 38:37–59. doi:10.1146/annurev.genet.38.072902.092425

    Article  PubMed  CAS  Google Scholar 

  • Doebley J, Stec A, Gustus C (1995) Teosinte branched1 and the origin of maize—evidence for epistasis and the evolution of dominance. Genetics 141(1):333–346

    Google Scholar 

  • Eshed Y, Zamir D (1996) Less than additive epistatic interactions of QTL in tomato. Genetics 143:1807–1817

    PubMed  CAS  Google Scholar 

  • Fernie AR, Tadmor Y, Zamir D (2006) Natural genetic variation for improving crop quality. Curr Opin Plant Biol 9(2):196–202. doi:10.1016/j.pbi.2006.01.010

    Article  PubMed  Google Scholar 

  • Finkers R, Finkers R, van Heusden AW,Meijer-Dekens F, van Kan JAL, Maris P, Lindhout P (2007) The construction of a Solanum habrochaites LYC4 introgression line population and the identification of QTLs for resistance to Botrytis cinerea. Theor Appl Genet 114(6):1071–1080

    Google Scholar 

  • Fridman E, Carrari F, Liu YS, Fernie AR, Zamir D (2004) Zooming in on a quantitative trait for tomato yield using interspecific introgressions. Science 305(5691):1786–1789. doi:10.1126/science.1101666

    Article  PubMed  CAS  Google Scholar 

  • Goddard ME, Hayes BJ (2007) Genomic selection. J Anim Breed Genet 124(6):323–330

    Article  PubMed  CAS  Google Scholar 

  • Gur A, Zamir D (2004) Unused natural variation can lift yield barriers in plant breeding. PLoS Biol 2(10):e245. doi:10.1371/journal.pbio.0020245

  • Gur A, Semel Y, Cahaner A, Zamir D (2004) Real time QTL of complex phenotypes in tomato interspecific introgression lines. Trends Plant Sci 9(3):107–109. doi:10.1016/j.tplants.2004.01.003

    Article  PubMed  CAS  Google Scholar 

  • Helguera M, Khan IA, Kolmer J, Lijavetzky D, Zhong-qi L, Dubcovsky J (2003) PCR assays for the Lr37-Yr17-Sr38 cluster of rust resistance genes and their use to develop isogenic hard red spring wheat lines. Crop Sci 43:1839–1847

    CAS  Google Scholar 

  • Herdt RW (2006) Biotechnology in agriculture. Annu Rev Environ Resour 31:265–295. doi:10.1146/annurev.energy.31.031405.091314

    Article  Google Scholar 

  • Hospital F, Moreau L, Lacoudre F, Charcosset A, Gallais A (1997) More on the efficiency of marker-assisted selection. Theor Appl Genet 95(8):1181–1189

    Article  Google Scholar 

  • Hu XS (2007) A general framework for marker-assisted selection. Theor Popul Biol 71(4):524–542. doi:10.1016/j.tpb.2007.02.001

    Article  PubMed  Google Scholar 

  • Hyten DL, Choi IY, Song QJ, Shoemaker RC, Nelson RL, Costa JM et al (2007) Highly variable patterns of linkage disequilibrium in multiple soybean populations. Genetics 175(4):1937–1944. doi:10.1534/genetics.106.069740

    Article  PubMed  CAS  Google Scholar 

  • Kuchel H, Ye GY, Fox R, Jefferies S (2005) Genetic and economic analysis of a targeted marker-assisted wheat breeding strategy. Mol Breed 16(1):67–78. doi:10.1007/s11032-005-4785-7

    Article  Google Scholar 

  • Lande R, Thompson R (1990) Efficiency of marker-assisted selection in the improvement of quantitative traits. Genetics 124(3):743–756

    PubMed  CAS  Google Scholar 

  • Lecomte L, Duffe P, Buret M, Servin B, Hospital F, Causse M (2004) Marker-assisted introgression of five QTLs controlling fruit quality traits into three tomato lines revealed interactions between QTLs and genetic backgrounds. Theor Appl Genet 109(3):658–668. doi:10.1007/s00122-004-1674-0

    Article  PubMed  CAS  Google Scholar 

  • LeDeaux JR, Graham GI, Stuber CW (2006) Stability of QTLs involved in heterosis in maize when mapped under several stress conditions. Maydica 51(1):151–167

    Google Scholar 

  • Meuwissen THE, Hayes BJ, Goddard ME (2001) Prediction of total genetic value using genome-wide dense marker maps. Genetics 157(4):1819–1829

    PubMed  CAS  Google Scholar 

  • Moerkerke B, Goetghebeur E, De Riek J, Roldan-Ruiz I (2006) Significance and impotence: towards a balanced view of the null and the alternative hypotheses in marker selection for plant breeding. J R Stat Soc [Ser A] 169:61–79

    Article  Google Scholar 

  • Moreau L, Charcosset A, Hospital F, Gallais A (1998) Marker-assisted selection efficiency in populations of finite size. Genetics 148(3):1353–1365

    PubMed  CAS  Google Scholar 

  • Moreau L, Monod H, Charcosset A, Gallais A (1999) Marker-assisted selection with spatial analysis of unreplicated field trials. Theor Appl Genet 98(2):234–242

    Article  Google Scholar 

  • Moreau L, Lemarie S, Charcosset A, Gallais A (2000) Economic efficiency of one cycle of marker-assisted selection. Crop Sci 40(2):329–337

    Google Scholar 

  • Moreau L, Charcosset A, Gallais A (2004) Use of trial clustering to study QTL × environment effects for grain yield and related traits in maize. Theor Appl Genet 110(1):92–105. doi:10.1007/s00122-004-1781-y

    Article  PubMed  CAS  Google Scholar 

  • Naylor RL, Falcon WP, Goodman RM, Jahn MM, Sengooba T, Tefera H et al (2004) Biotechnology in the developing world: a case for increased investments in orphan crops. Food Policy 29(1):15–44. doi:10.1016/j.foodpol.2004.01.002

    Article  Google Scholar 

  • Neimann-Sorenson A, Robertson A (1961) The association between blood groups and several production characteristics in three Danish cattle breeds. Acta Agric Scand 11:163–196

    Article  Google Scholar 

  • Nocente F, Gazza L, Pasquini M (2007) Evaluation of leaf rust resistance genes Lr1, Lr9, Lr24, Lr47 and their introgression into common wheat cultivars by marker-assisted selection. Euphytica 155(3):329–336. doi:10.1007/s10681-006-9334-x

    Article  CAS  Google Scholar 

  • Park S, Yoon MK, Lee SS, Kim KT, Chun C, Park HG (2007) Development of uniform double-crossed varieties using near-isogenic lines produced by marker-assisted selection in radish (Raphanus sativus L.). HortScience 42(4):856–856

  • Paterson AH, Lander ES, Hewitt JD, Peterson S, Lincoln SE, Tanksley SD (1988) Resolution of quantitative traits into Mendelian factors by using a complete linkage map of restriction fragment length polymorphisms. Nature 335:721–726. doi:10.1038/335721a0

    Article  PubMed  CAS  Google Scholar 

  • Pestsova EG, Börner A, Röder MS (2006) Development and QTL assessment of Triticum aestivumAegilops tauschii introgression lines. Theor Appl Genet 112(4):634–647. doi:10.1007/s00122-005-0166-1

    Article  PubMed  Google Scholar 

  • Pray CE, Naseem A (2007) Supplying crop biotechnology to the poor: opportunities and constraints. J Dev Stud 43(1):192–217. doi:10.1080/00220380601055676

    Article  Google Scholar 

  • Price AH (2006) Believe it or not, QTLs are accurate!. Trends Plant Sci 11(5):213–216. doi:10.1016/j.tplants.2006.03.006

    Article  PubMed  CAS  Google Scholar 

  • Reece JD, Haribabu E (2007) Genes to feed the world: the weakest link? Food Policy 32(4):459–479. doi:10.1016/j.foodpol.2006.10.003

    Article  Google Scholar 

  • Rocha JL, Eisen EJ, Siewerdt F, Vleck LDV, Pomp D (2004) A large-sample QTL study in mice: III. Reproduction. Mamm Genome 15(11):878–886. doi:10.1007/s00335-004-2364-6

    Google Scholar 

  • Servin B, Martin OC, Mezard M, Hospital F (2004) Toward a theory of marker-assisted gene pyramiding. Genetics 168(1):513–523. doi:10.1534/genetics.103.023358

    Article  PubMed  CAS  Google Scholar 

  • Shen L, Courtois B, McNally KL, Robin S, Li Z (2001) Evaluation of near-isogenic lines of rice introgressed with QTLs for root depth through marker-aided selection. Theor Appl Genet 103:75–83

    Google Scholar 

  • Smith C (1967) Improvement in metric traits through specific genetic loci. Anim Prod 9:349–358

    Google Scholar 

  • Soller M (1978) Use of loci associated with quantitative effects in dairy-cattle improvement. Anim Prod 27:133–139

    Google Scholar 

  • Soller M, Beckmann JS (1983) Genetic polymorphism in varietal identification and genetic improvement. Theor Appl Genet 67:25–33. doi:10.1007/BF00303917

    Article  Google Scholar 

  • Soller M, Plotkinhazan J (1977) Use marker alleles for introgression of linked quantitative alleles. Theor Appl Genet 51(3):133–137

    Google Scholar 

  • Spielman DJ (2007) Pro-poor agricultural biotechnology: can the international research system deliver the goods? Food Policy 32(2):189–204. doi:10.1016/j.foodpol.2006.05.002

    Article  Google Scholar 

  • Stuber CW (1982) Improvement of yield and ear number resulting from selection at allozyme loci in a maize population. Crop Sci 22:737

    Google Scholar 

  • Stuber CW, Polacco M, Lynn M (1999) Synergy of empirical breeding, marker-assisted selection, and genomics to increase crop yield potential. Crop Sci 39(6):1571–1583

    Google Scholar 

  • Szalma SJ, Hostert BM, LeDeaux JR, Stuber CW, Holland JB (2007) QTL mapping with near-isogenic lines in maize. Theor Appl Genet 114(7):1211–1228. doi:10.1007/s00122-007-0512-6

    Article  PubMed  CAS  Google Scholar 

  • Tanksley SD, McCouch SR (1997) Seed banks and molecular maps: unlocking genetic potential from the wild. Science 277(5329):1063–1066. doi:10.1126/science.277.5329.1063

    Article  PubMed  CAS  Google Scholar 

  • Tanksley SD, Rick CM (1980) Isozymic gene linkage map of the tomato—applications in genetics and breeding. Theor Appl Genet 57(4):161–170. doi:10.1007/BF00279708

    Article  CAS  Google Scholar 

  • Tanksley SD, Medino-Filho DH, Rick CM (1981) The effect of isozyme selection on metric characters in an interspecific backcross of tomato: basis of an early screening procedure. Theor Appl Genet 60:291–296. doi:10.1007/BF00263721

    Article  Google Scholar 

  • Toenniessen GH, O’Toole JC, DeVries J (2003) Advances in plant biotechnology and its adoption in developing countries. Curr Opin Plant Biol 6(2):191–198. doi:10.1016/S1369-5266(03)00002-5

    Article  PubMed  Google Scholar 

  • Varshney RK, Graner A, Sorrells ME (2005) Genomics-assisted breeding for crop improvement. Trends Plant Sci 10(12):621–630. doi:10.1016/j.tplants.2005.10.004

    Article  PubMed  CAS  Google Scholar 

  • Wan XY, Wan JM, Jiang L, Wang JK, Zhai HQ, Weng JF et al (2006) QTL analysis for rice grain length and fine mapping of an identified QTL with stable and major effects. Theor Appl Genet 112(7):1258–1270. doi:10.1007/s00122-006-0227-0

    Article  PubMed  CAS  Google Scholar 

  • Wang JK, Chapman SC, Bormett DG, Rebetzke GJ, Crouch J (2007) Application of population genetic theory and simulation models to efficiently pyramid multiple genes via marker-assisted selection. Crop Sci 47(2):582–590

    Google Scholar 

  • Xu SZ (2003) Estimating polygenic effects using markers of the entire genome. Genetics 163(2):789–801

    PubMed  CAS  Google Scholar 

  • Ye G, Moody D, Emebiri L, van Ginkel M (2007) Designing an optimal marker-based pedigree selection strategy for parent building in barley in the presence of repulsion linkage, using computer simulation. Aust J Agric Res 58(3):243–251. doi:10.1071/AR06177

    Article  Google Scholar 

  • Young ND (1999) A cautiously optimistic vision for marker-assisted breeding. Mol Breed 5(6):505–510. doi:10.1023/A:1009684409326

    Article  Google Scholar 

  • Zhang J, Li X, Jiang G, Xu Y, He Y (2006) Pyramiding of Xa7 and Xa21 for the improvement of disease resistance to bacterial blight in hybrid rice. Plant Breed 125(6):600–605. doi:10.1111/j.1439-0523.2006.01281.x

    Article  CAS  Google Scholar 

Download references

Acknowledgements

I warmly thank W. G. Hill and an anonymous reviewer for patience and self-abnegation in providing numerous helpful comments that greatly improved the quality of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frédéric Hospital.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hospital, F. Challenges for effective marker-assisted selection in plants. Genetica 136, 303–310 (2009). https://doi.org/10.1007/s10709-008-9307-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10709-008-9307-1

Keywords

Navigation