Skip to main content
Log in

Development and QTL assessment of Triticum aestivum–Aegilops tauschii introgression lines

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

A set of 84 bread wheat lines, each containing a single homozygous introgression of the Aegilops tauschii genome was produced in the ‘Chinese Spring’ background via backcrossing of the D-genome chromosome substitution lines ‘Chinese Spring’/Sears’s ‘Synthetic 6x’ with the recurrent parent and subsequent selfing. The development of the lines was accompanied by microsatellite marker assisted selection. With the exception of three telomeric regions at chromosomes 1DL, 4DL and 7DS, and a region of less than 24 cM on the chromosome arm 3DL, the genome of Ae. tauschii is fully represented in these lines. The newly developed lines were used for the discovery of morphological and agronomical quantitative trait loci (QTLs) from the wild species. Fifty-two introgression lines were grown in the field and evaluated for six traits including flowering time, plant height, ear length, spikelet number, fertility and grain weight per ear. Seventeen significant QTLs were detected, Ae. tauschii contributed favourable alleles at nine loci influencing five traits. The whole set of 84 homozygous lines provides a tool for further testing the effects and stability of the detected QTLs and for the evaluation of new traits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Arraiano LS, Worland AJ, Ellerbrook C, Brown JKM (2001) Chromosomal location of a gene for resistance to Septoria tritici blotch (Mycosphaerella graminicola) in the hexaploid wheat Synthetic 6x. Theor Appl Genet 103:758–764

    Article  CAS  Google Scholar 

  • Börner A, Schumann E, Fürste A, Cöster H, Leithold B, Röder M, Weber W (2002) Mapping of quantitative trait loci determining agronomic important characters in hexaploid wheat (Triticum aestivum L.). Theor Appl Genet 105:921–936

    Article  PubMed  Google Scholar 

  • Bryan GJ, Stephenson P, Collins A, Kirby J, Smith JB, Gale MD (1999) Low levels of DNA sequence variation among adapted genotypes of hexaploid wheat. Theor Appl Genet 99:192–198

    Article  CAS  Google Scholar 

  • Doebley J, Stec A (1993) Inheritance of the morphological differences between maize and teosinte: comparison of results for two F2 populations. Genetics 134:559–570

    PubMed  CAS  Google Scholar 

  • Dvorak J, Luo M-C, Yang Z-L, Zhang H-B (1998) The structure of the Aegilops tauschii genepool and the evolution of hexaploid wheat. Theor Appl Genet 97:657–670

    Article  CAS  Google Scholar 

  • Eshed Y, Zamir D (1995) An introgression line population of Lycopersicon pennellii in the cultivated tomato enables the identification and fine mapping of yield-associated QTL. Genetics 141:1147–1162

    PubMed  CAS  Google Scholar 

  • Fridman E, Pleban T, Zamir D (2000) A recombination hotspot delimits a wild-species quantitative trait locus for tomato sugar content to 484 bp within an invertase gene. Proc Natl Acad Sci USA 97:4718–4723

    Article  PubMed  CAS  Google Scholar 

  • Fridman E, Liu YS, Carmel-Goren L, Gur A, Shoresh M, Pleban T, Eshed Y, Zamir D (2002) Two tightly linked QTLs modify tomato sugar content via different physiological pathways. Mol Genet Genom 266:821–826

    Article  CAS  Google Scholar 

  • Fridman E, Carrari F, Liu YS, Fernie AR, Zamir D (2004) Zooming in on a quantitative trait for tomato yield using interspecific introgressions. Science 305:1786–1789

    Article  PubMed  CAS  Google Scholar 

  • Fulton TM, Grandillo S, Beck-Bunn T, Fridman E, Frampton A, Lopez J, Petiard V, Uhlig J, Zamir D, Tanksley SD (2000) Advanced backcross QTL analysis of a Lycopersicon esculentum × Lycopersicon parviflorum cross. Theor Appl Genet 100:1025–1042

    Article  CAS  Google Scholar 

  • Hammer K (1980) Vorarbeiten zur monographischen Darstellung von Wildpflanzen-Sortimenten: Aegilops L. Die Kulturpflanze XXVIII:33–180

    Article  Google Scholar 

  • Helbaek H (1959) Domestication of food plants in the Old World. Science (Washington, DC) 130:365–371

    Article  Google Scholar 

  • Hsam SLK, Kieffer R, Zeller FJ (2001) Significance of Aegilops tauschii glutenin genes on breadmaking properties of wheat. Cereal Chem 78:521–525

    Article  CAS  Google Scholar 

  • Huang XQ, Coster H, Ganal MW, Röder MS (2003) Advanced backcross QTL analysis for the identification of quantitative trait loci alleles from wild relatives of wheat (Triticum aestivum L.). Theor Appl Genet 106:1379–1389

    PubMed  CAS  Google Scholar 

  • Huang XQ, Kempf H, Ganal MW, Röder MS (2004) Advanced backcross QTL analysis in progenies derived from a cross between a German elite winter wheat variety and a synthetic wheat (Triticum aestivum L.). Theor Appl Genet 109:933–943

    Article  PubMed  CAS  Google Scholar 

  • Kam-Morgan LNW, Gill BS, Muthukrishnan S (1989) DNA restriction fragment length polymorphism: a strategy for genetic mapping of D-genome of wheat. Genome 32:724–732

    CAS  Google Scholar 

  • Kihara H (1944) Discovery of the DD-analyser, one of the ancestors of vulgare wheat. Agric Hortic 19:889–890

    Google Scholar 

  • Kato K, Miura H, Sawada S (2000) Mapping QTLs controlling grain yield and its components on chromosome 5A of wheat. Theor Appl Genet 101:1114–1121

    Article  CAS  Google Scholar 

  • von Korff M, Wang H, Leon J, Pillen K (2004) Development of candidate introgression lines using an exotic barley accession (Hordeum vulgare ssp. spontaneum) as donor. Theor Appl Genet 109:1736–45

    Article  CAS  Google Scholar 

  • Lagudah ES, MacRitchie F, Halloran GM (1987) The influence of high-molecular-weight subunits of glutenin from Triticum tauschii on flour quality of synthetic hexaploid wheat. J Cereal Sci 5:129–138

    Article  CAS  Google Scholar 

  • Law CN, Worland AJ (1996) Inter-varietal chromosome substitution lines in wheat—revisited. Euphytica 89:1–10

    Article  Google Scholar 

  • Lubbers EL, Gill KS, Cox TS, Gill BS (1991) Variation of molecular markers among geographically diverse accessions of Triticum tauschii. Genome 34:354–361

    Google Scholar 

  • Lutz J, Hsam SLK, Limpert E, Zeller FJ (1995) Chromosomal location of powdery mildew resistance genes in Triticum aestivum L. (common wheat) 2 genes Pm2 and Pm19 from Aegilops squarrosa L. Heredity 74:152–156

    Google Scholar 

  • Matus I, Corey A, Filichkin T, Hayes PM, Vales MI, Kling J, Riera-Lizarazu O, Sato K, Powell W, Waugh R (2003) Development and characterization of recombinant chromosome substitution lines (RCSLs) using Hordeum vulgare subsp. spontaneum as a source of donor alleles in a Hordeum vulgare subsp. vulgare background. Genome 46:1010–1023

    Article  PubMed  CAS  Google Scholar 

  • McFadden ES, Sears ER (1946) The origin of Triticum spelta and its free-threshing hexaploid relatives. J Hered 37:81–89, 107–116

    Google Scholar 

  • McFadden ES, Sears ER (1947) The genome approach in radical wheat breeding. J Amer Soc Agron 39:1011–1026

    Google Scholar 

  • Monforte AJ, Friedman E, Zamir D, Tanksley SD (2001) Comparison of a set of allelic QTL-NILs for chromosome 4 of tomato: deductions about natural variation and implications for germplasm utilization. Theor Appl Genet 102:572–590

    Article  CAS  Google Scholar 

  • Nelson JC, Sorrells ME, Van Deynze AE, Lu YH, Atkinson M, Bernard M, Leroy Ph, Faris JD, Anderson JA (1995) Molecular mapping of wheat: major genes and rearrangements in homoeologous groups 4, 5, and 7. Genetics 141:721–731

    PubMed  CAS  Google Scholar 

  • Nelson JC (1997) QGENE: software for marker-based genomic analysis and breeding. Mol Breed 3:239–245

    Article  CAS  Google Scholar 

  • Paterson AH, Lin YR, Li Z, Schertz KF, Doebley JF, Pinsom SRM, Liu SC, Stansel JW, Irvine JE (1995) Convergent domestication of cereal crops by independent mutations at corresponding genetic loci. Science 269:1714–1718

    Article  PubMed  CAS  Google Scholar 

  • Peng J, Ronin Y, Fahima T, Röder M, Li Y, Nevo E, Korol A (2003) Domestication quantitative trait loci in Triticum dicoccoides, the progenitor of wheat. Proc Natl Acad Sci USA 100:2489–2494

    Article  PubMed  CAS  Google Scholar 

  • Pestsova E, Röder MS (2002) Microsatellite analysis of wheat chromosome 2D allows the reconstruction of chromosomal inheritance in pedigrees of breeding programmes. Theor Appl Genet 106:84–91

    PubMed  CAS  Google Scholar 

  • Pestsova E, Korzun V, Goncharov NP, Hammer K, Ganal MW, Röder MS (2000a) Microsatellite analysis of Aegilops tauschii germplasm. Theor Appl Genet 101:100–106

    Article  CAS  Google Scholar 

  • Pestsova EG, Ganal MW, Röder MS (2000b) Isolation and mapping of microsatellite markers specific for the D-genome of bread wheat. Genome 43:689–697

    Article  CAS  Google Scholar 

  • Pestsova E, Börner A, Röder MS (2001) Development of a set of Triticum aestivum–Aegilops tauschii introgression lines. Hereditas 135:139–143

    Article  PubMed  CAS  Google Scholar 

  • Pestsova E, Börner A, Röder MS (2003) Application of microsatellite markers to develop Triticum aestivum–Aegilops tauschii defined introgression lines. In: Proceedings of the 12th international EWAC workshop, Norwich, UK, pp 32–35

  • Plaschke J, Ganal MW Röder MS (1995) Detection of genetic diversity in closely related bread wheat using microsatellite markers. Theor Appl Genet 91:1001–1007

    Article  CAS  Google Scholar 

  • Poncet V, Martel E, Allouis S, Devos KM, Lamy F, Sarr A, Robert T (2000) Comparative analysis of QTLs affecting domestication traits between two domesticated × wild pearl millet (Pennisetum glaucum L., Poaceae) crosses. Theor Appl Genet 104:965–975

    Google Scholar 

  • Röder MS, Korzun V, Wendehake K, Plaschke J, Tixier M-H, Leroy P, Ganal MW (1998) A microsatellite map of wheat. Genetics 149:2007–2023

    PubMed  Google Scholar 

  • Salina E, Korzun V, Pestsova E, Röder M, Börner A (2003) The study of the authenticity of inter-varietal chromosome substitution lines of wheat (Triticum aestivum L). In: Proceedings 12th international EWAC workshop, Norwich, UK, pp 28–31

  • Smith CM, Starkey S (2003) Resistance to greenbug (Heteroptera: Aphididae) biotype I in Aegilops tauschii synthetic wheats. J Econ Entomol 96:1571–1576

    Article  PubMed  Google Scholar 

  • Song QJ, Fickus EW, Cregan PB (2002) Characterization of trinucleotide SSR motifs in wheat. Theor Appl Genet 104:286–293

    Article  PubMed  CAS  Google Scholar 

  • Sourdille P, Cadalen T, Guyomarch H, Snape W, Perretant R, Charmet G, Boeuf C, Bernard S, Bernard M (2003) An update of the Courtot × Chinese Spring intervarietal molecular marker linkage map for the QTL detection of agronomic traits in wheat. Theor Appl Genet 106:530–538

    PubMed  CAS  Google Scholar 

  • Talbert LE, Smith LY, Blake NK (1998) More than one origin of hexaploid wheat is indicated by sequence comparison of low-copy DNA. Genome 41:402–407

    Article  CAS  Google Scholar 

  • Tanksley SD, McCouch SR (1997) Seed banks and molecular maps: unlocking genetic potential from the wild. Science 277:1063–1068

    Article  PubMed  CAS  Google Scholar 

  • Tilley M, Bean SR, Seib PA, Sears RG, Lookhart GL (2000) PCR amplification and DNA sequencing of high molecular weight glutenin subunits 43 and 44 from Triticum tauschii accession TA2450. In: Shewry PR, Tatham AS (eds) Wheat gluten. The Royal Society of Chemistry, UK, pp 105–108

    Chapter  Google Scholar 

  • Toth B, Galiba G, Feher E, Sutka J, Snape JW (2003) Mapping genes affecting flowering time and frost resistance on chromosome 5B of wheat. Theor Appl Genet 107:509–514

    Article  PubMed  CAS  Google Scholar 

  • Wieser H, Hsam SLK, Zeller FJ (2003) Relationship between the qualitative and quantitative compositions of gluten protein types and technological properties of synthetic hexaploid wheat derived from Triticum durum and Aegilops tauschii. Cereal Chem 80:247–251

    Article  CAS  Google Scholar 

  • Worland AJ, Börner A, Korzun V, Li WM, Petrovic S, Sayers EJ (1998) The influence of photoperiod genes on the adaptability of European winter wheats. Euphytica 100:385–394

    Article  CAS  Google Scholar 

  • Yan Y, Zheng J, Xiao Y, Yu J, Hu Y, Cai M, Li Y, Hsam SL, Zeller FJ (2004) Identification and molecular characterization of a novel y-type Glu-D t 1 glutenin gene of Aegilops tauschii. Theor Appl Genet 108:1349–1358

    Article  PubMed  CAS  Google Scholar 

  • Yang WY, Yu Y, Zhang Y, Hu XR, Wang Y, Zhou YC, Lu BR (2003) Inheritance and expression of stripe rust resistance in common wheat (Triticum aestivum) transferred from Aegilops tauschii and its utilization. Hereditas 139:49–55

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant of the Deutsche Forschungsgemeinschaft (grant no. Ro1055/1-5). We thank Renate Voß, Ellen Weiß, Bärbel Apel, Angelika Flieger and Sonja Allner for their excellent technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena G. Pestsova.

Additional information

Communicated by B. Friebe

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pestsova, E.G., Börner, A. & Röder, M.S. Development and QTL assessment of Triticum aestivum–Aegilops tauschii introgression lines. Theor Appl Genet 112, 634–647 (2006). https://doi.org/10.1007/s00122-005-0166-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-005-0166-1

Keywords

Navigation