Skip to main content
Log in

Mapping quantitative trait loci for yield-related traits in Chinese cabbage (Brassica rapa L. ssp. pekinensis)

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Chinese cabbage (Brassica rapa L. ssp. pekinensis) is one of the most important vegetables in China. However, the inheritance of yield-related traits in Chinese cabbage is poorly understood to date. To map quantitative trait loci (QTL) for yield-related traits in Chinese cabbage, a genetic linkage map was constructed with 192 doubled haploid (DH) lines. The genetic map was constructed based on 190 sequence-related amplified polymorphisms and 43 simple sequence repeats. QTL mapping was conducted for 11 yield-related traits in 170 DH lines derived from a cross between two diverse Chinese cabbage lines, ‘WZ’ and ‘FT’, under different environmental conditions. A total of 46 main QTL (M-QTL) and 7 epistatic QTL (E-QTL) were identified. The phenotypic variation explained by each M-QTL and E-QTL ranged from 4.85 to 25.06 % and 1.85 to 13.29 %, respectively. The QTL-by-environment interactions were detected using the QTLNetwork 2.0 program in joint analyses of multi-environment phenotypic values. The phenotypic variation explained by each QTL and by QTL × environment interaction was 1.14–4.24 % and 0.00–1.26 %, respectively. Our results provide a better understanding of the genetic factors controlling leaf and head-related traits in Chinese cabbage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Carlborg Ö, Jacobsson L, Ahgren P, Siegel P, Andersson L (2006) Epistasis and the release of genetic variation during long-term selection. Nat Genet 38:418–420

    Article  PubMed  CAS  Google Scholar 

  • Cheng XM, Xu J, Xia S, Gu J, Yang Y, Fu J, Qian X, Zhang S, Wu J, Liu K (2009) Development and genetic mapping of microsatellite markers from genome survey sequences in Brassica napus. Theor Appl Genet 118:1121–1131

    Article  PubMed  CAS  Google Scholar 

  • Choi S, Teakle G, Plaha P, Kim J, Allender C, Beynon E, Piao Z, Soengas P, Han T, King G, Barker G, Hand P, Lydiate D, Batley J, Edwards D, Koo D, Bang J, Park BS, Lim Y (2007) The reference genetic linkage map for the multinational Brassica rapa genome sequencing project. Theor Appl Genet 115:777–792

    Article  PubMed  CAS  Google Scholar 

  • Doebley J, Stec A, Gustus C (1995) Teosinte branched1 and the origin of maize: evidence for epistasis and the evolution of dominance. Genetics 141:333–346

    PubMed  CAS  Google Scholar 

  • Ferriol M, Pico B, Nuez F (2003) Genetic diversity of a germplasm collection of Cucurbita pepo using SRAP and AFLP markers. Theor Appl Genet 107:271–282

    Article  PubMed  CAS  Google Scholar 

  • Foisset N, Delourme R, Barret P, Hubert N, Landry BS, Renard M (1996) Molecular mapping analysis in Brassica napus using isozyme, RAPD and RFLP markers on a double haploid progeny. Theor Appl Genet 93:1017–1025

    Article  CAS  Google Scholar 

  • Ge Y, Ramchiary N, Wang T, Liang C, Wang N, Wang Z, Choi SR, Lim YP, Piao ZY (2011) Mapping quantitative trait loci for leaf and heading-related traits in Chinese cabbage (Brassica rapa L. ssp. pekinensis). Hortic Environ Biotechnol 52:494–501

    Article  Google Scholar 

  • Ge Y, Wang T, Wang N, Wang Z, Liang C, Ramchisry N, Choi SR, Lim YP, Piao ZY (2012) Genetic mapping and localization of quantitative trait loci for chlorophyll II content in Chinese cabbage (Brassica rapa ssp. pekinensis). Sci Hortic 147:42–48

    Article  CAS  Google Scholar 

  • Graner A, Jahoor A, Schondelmaier J, Siedler H, Pillen K, Fischbeck G, Wenzel G, Herrmann RG (1991) Construction of an RFLP map of barley. Theor Appl Genet 83:250–256

    Article  Google Scholar 

  • Iniguez-Luy FL, Vande Voort A, Osborn TC (2008) Development of a set of public SSR markers derived from genomic equence of a rapid cycling Brassica oleracea L. genotype. Theor Appl Genet 117:977–985

    Article  PubMed  CAS  Google Scholar 

  • Kim HR, Choi SR, Bae JN, Hong CP, Lee SY, Hossain MJ, Nguyen DV, Jin MN, Park BS, Bang JW, Bancroft I, Lim YP (2009) Sequenced BAC anchored reference genetic map that reconciles the ten individual chromosomes of Brassica rapa. BMC Genomics 10:432

    Article  PubMed  Google Scholar 

  • Kim JS, Chung TY, King GJ, Jin M, Yang TJ, Jin YM, Kim HI, Park BS (2006) A sequence-tagged linkage map of Brassica rapa. Genetics 174:29–39

    Google Scholar 

  • Kosambi DD (1943) The estimation of map distance from recombination values. Ann Eugen 12:172–175

    Article  Google Scholar 

  • Kubo T, Yoshimura A (2005) Epistasis underlying female sterility detected in hybrid breakdown in a Japonica–Indica cross of rice (Oryza sativa L.). Theor Appl Genet 110:346–355

    Article  PubMed  CAS  Google Scholar 

  • Li G, Quiros CF (2001) Sequence-related amplified polymorphism (SRAP), a new marker system based on a simple PCR reaction: its application to mapping and gene tagging in Brassica. Theor Appl Genet 103:455–461

    Article  CAS  Google Scholar 

  • Li ZK, Pinson SRM, Paterson AH, Park WD, Stansel JW (1997) Epistasis for three grain yield components in rice (Oryza sativa L.). Genetics 145:453–465

    PubMed  CAS  Google Scholar 

  • Li F, Kitashiba H, Inaba K, Nishio T (2009) A Brassica rapa linkage map of EST-based SNP markers for identification of candidate genes controlling flowering time and leaf morphological traits. DNA Res 16:311–323

    Article  PubMed  CAS  Google Scholar 

  • Li H, Yu SC, Zhang FL, Yu YJ, Zhao XY, Zhang DS, Zhao X (2011) Development of molecular markers linked to the resistant QTL for downy mildew in Brassica rapa L. ssp. pekinensis. Yi Chuan 33:1271–1278

    Article  PubMed  CAS  Google Scholar 

  • Lin ZX, Zhang XL, Nie YC et al (2003) Construction of a genetic linkage map for cotton based on SRAP. Chin Sci Bull 48:2064–2068

    Google Scholar 

  • Lou P, Zhao JJ, Kim JS, Shen S, Kunia PDC, Song XF, Jin MN, Vreugdenhil D, Wang XW, Koornneef M, Bonnema G (2007) Quantitative trait loci for flowering time and morphological traits in multiple populations of Brassica rapa. J Exp Bot 58:4005–4016

    Article  PubMed  CAS  Google Scholar 

  • Lou P, Xie Q, Xu X, Edwards CE, Brock MT, Weinig C, McClung CR (2011) Genetic architecture of the circadian clock and flowering time in Brassica rapa. Theor Appl Genet 123:397–409

    Article  PubMed  CAS  Google Scholar 

  • Lowe AJ, Moule C, Trick M, Edwards K (2004) Efficient large-scale development of microsatellites for marker and mapping applications in Brassica crop species. Theor Appl Genet 108:1103–1112

    Article  PubMed  CAS  Google Scholar 

  • Lu G, Cao JS, Yu XL, Xiang X, Chen H (2008) Mapping QTLs for root morphological traits in Brassica rapa L. based on AFLP and RAPD markers. J Appl Genet 49:23–31

    Article  PubMed  Google Scholar 

  • Malmberg RL, Held S, Waits A, Mauricio R (2005) Epistasis for fitness-related quantitative traits in Arabidopsis thaliana grown in the Weld and in the greenhouse. Genetics 171:2013–2027

    Article  PubMed  CAS  Google Scholar 

  • Murray MG, Thompson WF (1980) Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res 8:4321–4326

    Article  PubMed  CAS  Google Scholar 

  • Nagaharu U (1935) Genome analysis in Brassica with special reference to the experimental formation of B. napus and peculiar mode of fertilization. Jpn J Bot 7:389–452

    Google Scholar 

  • Piquemal J, Cinquin E, Couton F, Rondeau C, Seignoret E, Doucet I, Perret D, Villeger MJ, Vincourt P, Blanchard P (2005) Construction of an oilseed rape (Brassica napus L.) genetic map with SSR markers. Theor Appl Genet 111:1514–1523

    Article  PubMed  CAS  Google Scholar 

  • Radoev M, Becker HC, Ecke W (2008) Genetic analysis of heterosis for yield and yield components in rapeseed (Brassica napus L.) by quantitative trait locus mapping. Genetics 179:1547–1558

    Article  PubMed  CAS  Google Scholar 

  • Shen X, Zhang T, Guo W, Zhu X, Zhang X (2006) Mapping fiber and yield QTLs with main, epistatic and QTL × environment interaction effects in recombinant inbred lines of upland cotton. Crop Sci 46:61–66

    Article  CAS  Google Scholar 

  • Shibaike H (1998) Molecular genetic mapping and plant evolutionary biology. J Plant Res 111:383–388

    Article  CAS  Google Scholar 

  • Snowdon RJ, Friedt W (2004) Molecular markers in Brassica oilseed breeding: current status and future possibilities. Plant Breed 123:1–8

    Article  CAS  Google Scholar 

  • Suwabe K, Iketani H, Nunome T, Kage T, Hirai M (2002) Isolation and characterization of microsatellites in Brassica rapa L. Theor Appl Genet 104:1092–1098

    Article  PubMed  CAS  Google Scholar 

  • Suwabe K, Tsukazaki H, Iketani H, Hatakeyama K, Kondo M, Fujimura M, Nunome T, Fukuoka H, Hirai M, Matsumoto S (2006) Simple sequence repeat-based comparative genomics between Brassica rapa and Arabidopsis thaliana: the genetic origin of clubroot resistance. Genetics 173:309–319

    Article  PubMed  CAS  Google Scholar 

  • Uzunova MI, Ecke W (1999) Abundance, polymorphism and genetic mapping of microsatellites in oilseed rape (Brassica napus L.). Plant Breed 118:323–326

    Article  CAS  Google Scholar 

  • Van Ooijen JW, Voorrips RE (2002) Join Map Version 3.0: software for the calculation of genetic linkage maps. CPRO-DLO, Wageningen

  • Voorrips RE (2002) MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered 93:77–78

    Article  PubMed  CAS  Google Scholar 

  • Wang ZF, Cheng JP, Chen ZW, Huang J, Bao YM, Wang JF, Zhang HS (2012) Identification of QTLs with main, epistatic and QTL × environment interaction effects for salt tolerance in rice seedlings under different salinity conditions. Theor Appl Genet 125:807–815

    Article  PubMed  CAS  Google Scholar 

  • Wu WL, Zhou B, Luo D, Yan HF, Li YH, Kawabata SY (2012) Development of simple sequence repeat (SSR) markers that are polymorphic between cultivars in Brassica rapa subsp. rapa. Afr J Biotechnol 11:2654–2660

    Article  CAS  Google Scholar 

  • Würschum T, Maurer HP, Schulz B, Möhring J, Reif JC (2011) Genome-wide association mapping reveals epistasis and genetic interaction networks in sugar beet. Theor Appl Genet 123:109–118

    Article  PubMed  Google Scholar 

  • Yang J, Zhu J, Williams RW (2007) Mapping the genetic architecture of complex traits in experimental populations. Bioinformatics 23:1527–1536

    Article  PubMed  CAS  Google Scholar 

  • Yu SB, Li JX, Tan YF, Gao YJ, Li XH, Zhang QF, Maroof MAS (1997) Importance of epistasis as the genetic basis of heterosis in an elite rice hybrid. Proc Natl Acad Sci USA 94:9226–9231

    Article  PubMed  CAS  Google Scholar 

  • Yu SC, Zhang FL, Yu RB, Zou YM, Qi JN, Zhao XY, Yu YJ, Zhang DS, Li L (2009) Genetic mapping and localization of a major QTL for seedling resistance to downy mildew in Chinese cabbage (Brassica rapa ssp. pekinensis). Mol Breed 23:573–590

    Article  CAS  Google Scholar 

  • Zeng ZB (2005) Modeling quantitative trait loci and interpretation of models. Genetics 169:1711–1725

    Article  PubMed  CAS  Google Scholar 

  • Zhang JF, Lu Y, Yuan YI, Zhang XW, Geng JF, Chen Y, Cloutier S, McVetty PBE, Li GY (2009) Map-based cloning and characterization of a gene controlling hairiness and seed coat color traits in Brassica rapa. Plant Mol Biol 69:553–563

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was financially supported by a Grant from the National Natural Science Foundation of China (No. 31071792, 31272157).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Feng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Y., Zhang, Y., Xing, J. et al. Mapping quantitative trait loci for yield-related traits in Chinese cabbage (Brassica rapa L. ssp. pekinensis). Euphytica 193, 221–234 (2013). https://doi.org/10.1007/s10681-013-0931-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10681-013-0931-1

Keywords

Navigation