Skip to main content
Log in

Genome-wide association mapping reveals epistasis and genetic interaction networks in sugar beet

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Epistasis is defined as interactions between alleles of two or more genetic loci. Detection of epistatic interactions is the key to understand the genetic architecture and gene networks underlying complex traits. Here, we examined the extent of epistasis for seven quantitative traits with an association mapping approach in a large population of elite sugar beet lines. We found that correction for population stratification is required and that in terms of reducing the false-positive rate the mixed model approach including the kinship matrix performed best. In genome-wide scans, we detected both main effects and epistatic QTL. For physiological traits, the detected digenic and higher-order epistasis explained a considerable proportion of the genotypic variance. We illustrate that the identified epistatic interactions define comprehensive genetic networks, which may serve as starting points towards a systems-oriented approach to understand the regulation of complex traits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bernardo R (1993) Estimation of coefficient of coancestry using molecular markers in maize. Theor Appl Genet 85:1055–1062

    Article  CAS  Google Scholar 

  • Brem RB, Kruglyak L (2005) The landscape of genetic complexity across 5.700 gene expression traits in yeast. Proc Natl Acad Sci USA 102:1572–1577

    Article  PubMed  CAS  Google Scholar 

  • Carlborg Ö, Haley CS (2004) Epistasis: too often neglected in complex trait studies? Nat Rev Genet 5:618–625

    Article  PubMed  CAS  Google Scholar 

  • Carlborg Ö, Jacobsson L, Ahgren P, Siegel P, Andersson L (2006) Epistasis and the release of genetic variation during long-term selection. Nat Genet 38:418–420

    Article  PubMed  CAS  Google Scholar 

  • Chao S, Zhang W, Dubcovsky J, Sorrells ME (2007) Evaluation of genetic diversity and genome-wide linkage disequilibrium among U.S. wheat (Triticum aestivum L.) germplasm representing different market classes. Crop Sci 47:1018–1030

    Article  CAS  Google Scholar 

  • Costanzo M, Baryshnikova A, Bellay J, Kim Y, Spear ED et al (2010) The genetic landscape of a cell. Science 327:425–431

    Article  PubMed  CAS  Google Scholar 

  • Draycott AP (2006) Sugar beet, 1st edn. Blackwell, Oxford

    Book  Google Scholar 

  • Eshed Y, Zamir D (1996) Less-than-additive epistatic interactions of quantitative trait loci in tomato. Genetics 143:1807–1817

    PubMed  CAS  Google Scholar 

  • Gilmour AR, Gogel BJ, Cullis BR, Thompson R (2006) ASReml User Guide Release 2.0 VSN International Ltd, Hermel Hempstead, UK

  • He X, Qian W, Wang Z, Li Y, Zhang J (2010) Prevalent positive epistasis in Escherichia coli and Saccharomyces cerevisiae metabolic networks. Nat Genet 42:272–276

    Article  PubMed  CAS  Google Scholar 

  • Hill WG, Robertson A (1968) Linkage disequilibrium in finite populations. Theor Appl Genet 38:226–231

    Article  Google Scholar 

  • Holm S (1979) A simple sequentially rejective multiple test procedure. Scand J Stat 6:65–70

    Google Scholar 

  • Kraakman ATW, Niks RE, Van den Berg PMMM, Stam P, Van Eeuwijk FA (2004) Linkage disequilibrium mapping of yield and yield stability in modern spring barley cultivars. Genetics 168:435–446

    Article  PubMed  CAS  Google Scholar 

  • Li Z, Pinson SR, Park WD, Paterson AH, Stansel JW (1997) Epistasis for three grain yield components in rice (Oryza sativa L.). Genetics 145:453–465

    PubMed  CAS  Google Scholar 

  • Lynch M, Walsh B (1998) Genetics and analysis of quantitative traits. Sinauer Assoc., Sunderland

    Google Scholar 

  • Mantel N (1967) The detection of disease clustering and a generalized regression approach. Cancer Res 27:209–220

    PubMed  CAS  Google Scholar 

  • Maurer HP, Melchinger AE, Frisch M (2008) Population genetic simulation and data analysis with Plabsoft. Euphytica 161:133–139

    Article  Google Scholar 

  • Melchinger AE, Utz HF, Schön CC (1998) Quantitative trait locus (QTL) mapping using different testers and independent population samples in maize reveals low power of QTL detection and larger bias in estimates of QTL effects. Genetics 149:383–403

    PubMed  CAS  Google Scholar 

  • Montooth KL, Marden JH, Clark AG (2003) Mapping determinants of variation in energy metabolism, respiration and flight in Drosophila. Genetics 165:623–635

    PubMed  CAS  Google Scholar 

  • Phillips PC (2008) Epistasis—the essential role of gene interactions in the structure and evolution of genetic systems. Nat Rev Genet 9:855–867

    Article  PubMed  CAS  Google Scholar 

  • Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA et al (2006) Principal components analysis corrects for stratification in genome-wide association studies. Nat Genet 38:904–909

    Article  PubMed  CAS  Google Scholar 

  • Schadt EE, Monks SA, Drake TA, Lusis AJ, Che N et al (2003) Genetics of gene expression surveyed in maize, mouse and man. Nature 422:297–302

    Article  PubMed  CAS  Google Scholar 

  • Schneider K, Schäfer-Pregl R, Borchardt C, Salamini F (2002) Mapping QTLs for sucrose content, yield and quality in a sugar beet population fingerprinted by EST-related markers. Theor Appl Genet 104:1107–1113

    Article  PubMed  CAS  Google Scholar 

  • St Onge RP, Mani R, Oh J, Proctor M, Fung E et al (2007) Systematic pathway analysis using high-resolution fitness profiling of combinatorial gene deletions. Nat Genet 39:199–206

    Article  PubMed  CAS  Google Scholar 

  • Stich B, Melchinger AE, Frisch M, Maurer HP, Heckenberger M et al (2005) Linkage disequilibrium in European elite maize germplasm investigated with SSRs. Theor Appl Genet 111:723–730

    Article  PubMed  Google Scholar 

  • Stich B, Melchinger AE, Heckenberger M, Möhring J, Schechert A et al (2008a) Association mapping in multiple segregating populations of sugar beet (Beta vulgaris L.). Theor Appl Genet 117:1167–1179

    Article  PubMed  Google Scholar 

  • Stich B, Möhring J, Piepho HP, Heckenberger M, Buckler ES et al (2008b) Comparison of mixed-model approaches for association mapping. Genetics 178:1745–1754

    Article  PubMed  Google Scholar 

  • Stich B, Yu J, Melchinger AE, Piepho HP, Utz HF et al (2008c) Power to detect higher-order epistatic interactions in a metabolic pathway using a new mapping strategy. Genetics 176:563–570

    Article  Google Scholar 

  • Stram DO, Lee JW (1994) Variance components testing in longitudinal mixed effects model. Biometrics 50:1171–1177

    Article  PubMed  CAS  Google Scholar 

  • Tong AH, Lesage G, Bader GD, Ding H, Xu H et al (2004) Global mapping of the yeast genetic interaction network. Science 303:808–813

    Article  PubMed  CAS  Google Scholar 

  • Utz HF, Melchinger AE, Schön CC (2000) Bias and sampling error of the estimated proportion of genotypic variance explained by quantitative trait loci determined from experimental data in maize using cross validation and validation with independent samples. Genetics 154:1839–1849

    PubMed  Google Scholar 

  • Weber WE, Borchardt DC, Koch G (2000) Marker analysis for quantitative traits in sugar beet. Plant Breed 119:97–106

    Article  CAS  Google Scholar 

  • Weir BS (1996) Genetic data analysis II, 2nd edn. Sinauer Associates, Sunderland

    Google Scholar 

  • Wright S (1978) Evolution and genetics of populations, variability within and among natural populations, vol 4. The University of Chicago Press, Chicago, p 91

    Google Scholar 

  • Xu S, Jia Z (2007) Genomewide analysis of epistatic effects for quantitative traits in barley. Genetics 175:1955–1963

    Article  PubMed  CAS  Google Scholar 

  • Yu J, Pressoir G, Briggs WH, Vroh Bi I, Yamasaki M et al (2006) A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat Genet 38:203–208

    Article  PubMed  CAS  Google Scholar 

  • Zhao K, Aranzana MJ, Kim S, Lister C, Shindo C et al (2007) An Arabidopsis example of association mapping in structured samples. PLoS Genet 3:e4

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This research was conducted within the Biometric and Bioinformatic Tools for Genomics based Plant Breeding project supported by the German Federal Ministry of Education and Research (BMBF) within the framework of GABI-FUTURE initiative.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tobias Würschum.

Additional information

Communicated by F. van Eeuwijk.

Electronic supplementary material

Below is the link to the electronic supplementary material.

122_2011_1570_MOESM1_ESM.eps

Supplementary Figure S1 The 22 parents (1-22) with their male and female grandparents (23-40) are shown and the number of genotypes in the data set to which these parents contributed either as male or as female parent (progeny) (EPS 674 kb)

122_2011_1570_MOESM2_ESM.eps

Supplementary Figure S2 Plot of observed vs. expected P values for the epistasis scan with the model including the kinship matrix (K). (WSY, white sugar yield, SY, sugar yield, SC, sugar content, BY, beet yield, K, potassium, Na, sodium, N, α-amino nitrogen) (EPS 3480 kb)

122_2011_1570_MOESM3_ESM.eps

Supplementary Figure S3 (A) 2-way epistatic QTL and (B) 3-way epistatic QTL. The chromosomes are depicted as black lines. Interacting loci are connected by lines where the line strength indicates the size of the QTL effects for white sugar yield (WSY), sugar yield (SY), sugar content (SC), beet yield (BY), potassium (K), sodium (Na), and α-amino nitrogen (N). (EPS 1257 kb)

Supplementary Table S1 (DOCX 14 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Würschum, T., Maurer, H.P., Schulz, B. et al. Genome-wide association mapping reveals epistasis and genetic interaction networks in sugar beet. Theor Appl Genet 123, 109–118 (2011). https://doi.org/10.1007/s00122-011-1570-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-011-1570-3

Keywords

Navigation