Skip to main content
Log in

Molecular genetic mapping and plant evolutionary biology

  • Minireview
  • Published:
Journal of Plant Research Aims and scope Submit manuscript

Abstract

With the advent of molecular genetic mapping, it is possible to study the genetic basis of natural heritable variation in new ways. Here, three potential uses of molecular genetic mapping in plant ecology and evolutionary biology are discussed; (1) accurate estimation of genetic parameters, (2) understanding speciation and/or adaptation, and (3) investigating whole genome organization. Basic methods for mapping genes and important mapping strategies are outlined. Recent studies are introduced to illustrate progress so far in applying the new methods in ecological and evolutionary research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alstrom-Rapaport, C., Lascoux, M., Wang, Y.C., Roberts, G. andTuskan, G.A. 1998. Identification of a RAPD marker linked to sex determination in the basket willow (Salix viminalis L.). J. Hered.89: 44–49.

    Article  CAS  Google Scholar 

  • Bradshaw Jr, H.D., Wilbert, S.M., Otto, K.G. andSchemske, D.W. 1995. Genetic mapping of floral traits associated with reproductive isolation in monkeyflowers (Mimulus). Nature376: 762–765.

    Article  CAS  Google Scholar 

  • Carlquist, S. 1974. Island Biology. Columbia University Press, New York.

    Google Scholar 

  • Charlesworth, D. andCharlesworth, B. 1987. Inbreeding depression and its evolutionary consequences. Annu. Rev. Ecol. Syst.18: 237–268.

    Article  Google Scholar 

  • Cheverud, J.M. andRoutman, E. 1993. Quantitative trait loci: individual gene effects on quantitative characters. J. Evol. Biol.,6: 463–480.

    Article  Google Scholar 

  • Coyne, J.A. 1992. Genetics and speciation. Nature355: 511–515.

    Article  PubMed  CAS  Google Scholar 

  • Coyne, J.A. andLande, R. 1985. The genetic basis of species differences in plants. Amer. Nat.126: 141–145.

    Article  Google Scholar 

  • Fu, Y.-B. andRitland, K. 1994. Evidence for the partial dominance of viability genes contributing to inbreeding depression inMimulus guttatus. Genetics136: 323–311.

    PubMed  CAS  Google Scholar 

  • Gottlieb, L.D. 1984. Genetics and morphological evolution in plants. Amer. Nat.123: 681–709.

    Article  Google Scholar 

  • Grattapaglia, D. andSederoff, R. 1994. Genetic linkage maps ofEucalyptus grandis andEucalyptus urophylla using a pseudo-testcross mapping strategy and RAPD markers. Genetics137: 1121–1137.

    PubMed  CAS  Google Scholar 

  • Gustine, D.L., Sherwood, R.T. andHuff, D.R. 1997. Apospory-linked molecular markers in Buffelgrass. Crop Sci.37: 947–951.

    Article  CAS  Google Scholar 

  • Haldane, J.B.S. 1919. The combination of linkage values, and the calculation of distance between the loci of linked factors. J. Genet.8: 299–309.

    Article  Google Scholar 

  • Kearsey, M.J. andPooni, H.S. 1996. The Genetic Analysis of Quantitative Traits. Chapman & Hall, London.

    Google Scholar 

  • Kosambi, D.D. 1944. The estimation of map distance from recombination values. Ann. Eugen.12: 172–175.

    Google Scholar 

  • Lande, R. 1981. The minimum number of genes contributing to quantitative variation between and within populations. Genetics99: 541–553.

    PubMed  CAS  Google Scholar 

  • Lander, E.S. andBotstein, D. 1989. Mapping mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics121: 185–199.

    PubMed  CAS  Google Scholar 

  • Lander, E.S. andGreen, P. 1987. Construction of multilocus genetic linkage maps in humans. Proc. Natl. Acad. Sci. USA84: 2363–2367.

    Article  PubMed  CAS  Google Scholar 

  • Lander, E.S., Green, P., Abrahamson, J., Barlow, A., Daly, M.J., Lincoln, S.E. andNewburg, L. 1987. MAPMAKER: An interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics1: 174–181.

    Article  PubMed  CAS  Google Scholar 

  • Lewis, D. andJones, D.A. 1992. The genetics of heterostyly.In S.C.H. Barrett, ed., Evolution and Function of Heterostyly, Springer-Verlag, Berlin, pp. 129–150.

    Google Scholar 

  • Lin, J.-Z. andRitland, K. 1997. Quantitative trait loci differentiating the outbreedingMimulus guttatus from the inbreedingM. platycalyx. Genetics146: 1115–1121.

    PubMed  CAS  Google Scholar 

  • Michelmore, R.W., Paran, I. andKesseli, R.V. 1991. Identification of markers linked to disease-resistance genes by bulked segregant analysis: A rapid method to detect makers in specific genomic regions by using segregating populations. Proc. Natl. Acad. Sci. USA88: 9829–9832.

    Article  Google Scholar 

  • Mitchell-Olds T. 1995a. Interval mapping of viability loci causing heterosis inArabidopsis. Genetics140: 1105–1109.

    PubMed  CAS  Google Scholar 

  • Mitchell-Olds, T. 1995b. The molecular basis of quantitative genetic variation in natural populations. Trends Ecol. Evol.10: 324–328.

    Article  Google Scholar 

  • Mitchell-Olds, T. 1996. Genetic constraints on life history evolution: quantitative trait loci influencing growth and flowering inArabidopsis thaliana. Evolution50: 140–145.

    Article  Google Scholar 

  • O'Brien, S.J., Wienberg, J. andLyons, L.A. 1997. Comparative genomics: lessons from cats. Trends Genet.13: 393–399.

    Article  PubMed  Google Scholar 

  • Orr, H.A. andCoyne, J.A. 1992. The genetics of adaptation: a reassessment. Amer. Nat.140: 725–742.

    Article  CAS  Google Scholar 

  • Paterson, A.H., Damon, S., Hewitt, J.D., Zamir, D., Rabinowitch, H.D., Lincoln, S.E., Lander, E.S. andTanksley, S.D. 1991. Mendelian factors underlying quantitative traits in tomato: comparison across species, generations, and environments. Genetics127: 181–197.

    PubMed  CAS  Google Scholar 

  • Paterson, A.H., Lin, Y.-R., Li, Z., Schertz, K.F., Doebley, J.F., Pinson, S.R.M., Liu, S.-C., Stansel.,J.W. andIrvine, K.E. 1995. Convergent domestication of cereal crops by independent mutations at corresponding genetic loci. Science269: 1714–1718.

    CAS  PubMed  Google Scholar 

  • Rafalski, J.A. andTingey, S.V. 1993. Genetic diagnostics in plant breeding: RAPDs, microsatellites and machines. Trends Genet.8: 275–280.

    Article  Google Scholar 

  • Rieseberg, L.H., van Fossen, C. andDesrochers, A.M. 1995. Hybrid speciation accompanied by genomic reorganization in wild sunflowers. Nature375: 313–316.

    Article  CAS  Google Scholar 

  • Ritland, K. 1996. Inferring the genetic basis of inbreeding depression in plants. Genome39: 1–8.

    PubMed  CAS  Google Scholar 

  • Routman, E.J. andCheverud, J.M. 1997. Gene effects on a quantitative trait: two-locus epistatic effects measured at microsatellite markers and at estimated QTL. Evolution51: 1654–1662.

    Article  Google Scholar 

  • Stebbins, G.L. 1971. Chromosomal Evolution in Higher Plants. J.W. Arrowsmith Ltd., Bristol.

    Google Scholar 

  • Stuber, C.W., Lincoln, S.E., Wolff, D.W., Helentjaris, T. andLander, E.S. 1992. Identification of genetic factors contributing to heterosis in a hybrid from two elite maize inbred lines using molecular markers. Genetics132: 823–839.

    PubMed  CAS  Google Scholar 

  • Tanksley, S.D. 1983. Gene mapping.In S.D. Tanksley and T.J. Orton, eds., Isozymes in Plant Genetics and Breeding, Part A, Elsevier Science Publications B.V., Amsterdam, pp. 157–183.

    Google Scholar 

  • Tanksley, S.D. 1993. Mapping polygenes. Annu. Rev. Genet.27: 205–233.

    Article  PubMed  CAS  Google Scholar 

  • Tanksley, S.D., Ganal, M.W. andMartin, G.B. 1995. Chromosome landing: a paradigm for map-based gene cloning in plants with large genomes. Trends Genet.11: 63–68.

    Article  PubMed  CAS  Google Scholar 

  • Ukai, Y. 1997. MAPL97. Laboratory of Biometrics, Department of Agriculture, University of Tokyo.

  • van Treuren, R., Kuittinen, H., Kärkkäinen, K., Baena-Gonzalez, E. andSavolainen, O. 1997. Evolution of microsatellites inArabis petraea andArabis lyrata, outcrossing relatives ofArabidopsis thaliana. Mol. Biol. Evol.14: 220–229.

    PubMed  Google Scholar 

  • Weller, J.L., Soller, M. andBrody, T. 1988. Linkage analysis of quantitative traits in an interspecific cross of tomato (Lycopersicon esculentum × Lycopersicon pimpinellifolium) by means of genetic markers. Genetics118: 329–339.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shibaike, H. Molecular genetic mapping and plant evolutionary biology. J. Plant Res. 111, 383–388 (1998). https://doi.org/10.1007/BF02507802

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02507802

Key words

Navigation