Skip to main content
Log in

Advanced-backcross QTL analysis in spring barley: IV. Localization of QTL × nitrogen interaction effects for yield-related traits

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

The advanced backcross quantitative trait locus (AB-QTL) analysis has proven its usefulness to identify and localize favourable alleles from exotic germplasm and to transfer those alleles into elite varieties. In a balanced design with up to six environments and two nitrogen fertilization (N treatment) levels, a 4-factorial mixed model analysis of variance (ANOVA) was used to identify QTL main effects, QTL × environment interaction effects and QTL × N treatment interaction effects in the spring barley BC2DH population S42. The yield-related traits studied were number of ears per m2, days until heading, plant height, thousand grain weight (TGW) and grain yield. In total, 82 QTLs were detected for all traits. This finding was compared to a previous QTL study of the same population S42, where the current field data was reduced to one half through restriction of the analysis to the standard N treatment level (von Korff et al., Theor Appl Genet 112: 1221–1231, 2006). These authors located 54 QTLs for the same traits by applying a 3-factorial mixed model similar to the current model but excluding the factor N treatment. We found that QTL × environment interaction, alone or in combination, accounted for 24 of the newly uncovered QTLs, whereas QTL × N treatment interaction was of lesser importance with six new cases in total. A valuable QTL interacting with N treatment has been identified on chromosome 7H where lines carrying the wild barley allele were superior in number of ears per m2 in either N treatment. We conclude that in population S42 the extension of the phenotype data set and the inclusion of N treatment into the mixed model increased the power of QTL detection by providing an additional replication rather than by revealing specific N treatment QTLs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Agrama HAS, Zacharia AG, Said FB, Tuinstra M (1999) Identification of quantitative trait loci for nitrogen use efficiency in maize. Mol Breed 5:187–195

    Article  Google Scholar 

  • Allard RW (1999) Principles of plant breeding, 2nd edn. Wiley, New York, pp 138–140

    Google Scholar 

  • Backes G, Graner A, Foroughi-Wehr B, Fischbeck G, Wenzel G, Jahoor A (1995) Localization of quantitative trait loci (QTL) for agronomic important characters by the use of a RFLP map in barley (Hordeum vulgare L.). Theor Appl Genet 90:294–302

    Article  CAS  Google Scholar 

  • Baethgen WE, Christianson CB, Lamothe AG (1995) Nitrogen fertilizer effects on growth, grain yield, and yield components of malting barley. Field Crop Res 43:87–99

    Article  Google Scholar 

  • Baierl A, Bogdan M, Frommlet F, Futschik A (2006) On locating multiple interacting quantitative trait loci in intercross designs. Genetics 159:1351–1364

    Google Scholar 

  • Benjamini J, Yekutieli B (2005) Quantitative trait loci analysis using the false discovery rate. Genetics 171:783–790

    Article  CAS  PubMed  Google Scholar 

  • Bernacchi D, Beck-Bunn D, Eshed T, Lopez Y, Petiard V, Uhlig J, Zamir D, Tanksley SD (1998) Advanced backcross QTL analysis in tomato I. Identification of QTLs for traits of agronomic importance from Lycopersicon hirsutum. Theor Appl Genet 97:381–397

    Article  CAS  Google Scholar 

  • Bertin P, Gallais A (2001) Physiological and genetic basis of nitrogen use efficiency in maize II. QTL detection and coincidences. Maydica 46:53–68

    Google Scholar 

  • Bezant J, Pratchett N, Laurie D, Chojeki J, Kearsey M (1997) Mapping QTL controlling yield and yield components in a spring barley (Hordeum vulgare L.) cross using marker regression. Mol Breed 3:29–38

    Article  CAS  Google Scholar 

  • Bulman P, Smith DL (1993) Yield and yield component response of spring barley to fertilizer nitrogen. Agron J 85:226–231

    Article  CAS  Google Scholar 

  • Bulman P, Smith DL (1994) Post-heading nitrogen uptake, retranslocation, and partitioning in spring barley. Crop Sci 34:977–984

    Article  Google Scholar 

  • Ceccarelli S (1997) Adaptation to low/high input cultivation. In: Tigerstedt PMA (ed) Adaptation in plant breeding. Kluwer, Dordrecht, pp 225–236

    Google Scholar 

  • Fang P, Wu P (2001) QTL × N-level interaction for plant height in rice (Oryza sativa L.). Plant Soil 236:237–242

    Article  CAS  Google Scholar 

  • Fischbeck G (2003) Diversification through breeding. In: Von Bothmer R, Van Hintum T, Knupffer H, Sato K (eds) Diversity in barley (Hordeum vulgare). Elsevier Press, New York, pp 147–169

    Google Scholar 

  • Fulton TM, Nelson JC, Tanksley SD (1997) Introgression and DNA marker analysis of Lycopersicon peruvianum, a wild relative of the cultivated tomato, into Lycopersicon esculentum, followed through three successive backcross generations. Theor Appl Genet 95:895–902

    Article  CAS  Google Scholar 

  • Habash DZ, Bernard S, Schondelmaier J, Weyen J, Quarrie SA (2007) The genetics of nitrogen use on hexaploid wheat: N utilization, development and yield. Theor Appl Genet 114:403–419

    Article  CAS  PubMed  Google Scholar 

  • Hansson AC, Pettersson R, Paustian K (1987) Shoot and root production and nitrogen uptake in barley, with and without nitrogen fertilization. J Agron Crop Sci 158:163–171

    Article  Google Scholar 

  • Hayes PM, Liu BH, Knapp SJ, Chen F, Jones B, Blake T, Franckowiak J, Rasmusson D, Sorrells M, Ullrich SE, Wesenberg D, Kleinhofs A (1993) Quantitative trait locus effects and environmental interaction in a sample of North American barley germplasm. Theor Appl Genet 87:392–401

    Article  Google Scholar 

  • Hirel B, Le Gouis J, Ney B, Gallais A (2007) The challenge of improving nitrogen use efficiency in crop plants: towards a more central role for genetic variability and quantitative genetics within integrated approaches. J Exp Bot 58:2369–2387

    Article  CAS  PubMed  Google Scholar 

  • Kao CH, Zeng ZB, Teasdale RD (1999) Multiple interval mapping for quantitative trait loci. Genetics 152:1203–1216

    CAS  PubMed  Google Scholar 

  • Li J, Huang XQ, Heinrichs F, Ganal MW, Röder MS (2005) Analysis of QTLs for yield, yield components, and malting quality in a BC3-DH population of spring barley. Theor Appl Genet 110:356–363

    Article  CAS  PubMed  Google Scholar 

  • Li JZ, Huang XQ, Heinrichs F, Ganal MW, Röder MS (2006) Analysis of QTLs for yield components, agronomic traits, and disease resistance in an advanced backcross population of spring barley. Genome 49:454–466

    Article  CAS  PubMed  Google Scholar 

  • Malosetti M, Voltas J, Romagosa I, Ullrich S, van Eeuwijk FA (2004) Mixed models including environmental covariables for studying QTL by environment interaction. Euphytica 137:139–145

    Article  CAS  Google Scholar 

  • Manichaikul A, Moon JY, Sen S, Yandell BS, Broman KW (2009) A model selection approach for the identification of quantitative trait loci in experimental populations, allowing epistasis. Genetics 181:1077–1086

    Article  CAS  PubMed  Google Scholar 

  • Marquez-Cedillo LA, Hayes PM, Jones BL, Kleinhofs A, Legge WG, Rossnagel BG, Sato K, Ullrich E, Wesenberg DM (2000) QTL analysis of malting quality in barley based on the doubled-haploid progeny of two elite North American varieties representing different germplasm groups. Theor Appl Genet 1001:173–184

    Article  Google Scholar 

  • Mickelson S, See D, Meyer FD, Garner JP, Foster CR, Blake TK, Fischer AM (2003) Mapping QTL associated with nitrogen storage and remobilization in barley Hordeum vulgare (L.) leaves. J Exp Bot 54:801–812

    Article  CAS  PubMed  Google Scholar 

  • Moll RH, Kamprath EJ, Jackson WA (1982) Analysis and interpretation of factors which contribute to efficiency of nitrogen utilization. Agron J 74:562–564

    Article  Google Scholar 

  • Muurinen S, Slafer GA, Peltonen-Sainio P (2006) Breeding effects on nitrogen use efficiency of spring cereals under northern conditions. Crop Sci 46:561–568

    Article  CAS  Google Scholar 

  • Pillen K, Zacharias A, Léon J (2003) Advanced backcross QTL analysis in barley (Hordeum vulgare L.). Theor Appl Genet 107:340–352

    Article  CAS  PubMed  Google Scholar 

  • Pillen K, Zacharias A, Léon J (2004) Comparative AB-QTL analysis in barley using a single exotic donor of Hordeum vulgare ssp. spontaneum. Theor Appl Genet 108:1591–1601

    Article  CAS  PubMed  Google Scholar 

  • Quarrie SA, Steed A, Calestani C, Semikhodskii A, Lebreton C, Chinoy C, Steele N, Pljevljakusic D, Waterman E, Weyen J, Schondelmaier J, Habash DZ, Farmer P, Saker L, Clarkson DT, Abugalieva A, Yessimbekova M, Turuspekov Y, Abugalieva S, Tuberosa R, Sanguineti MC, Hollington PA, Aragues R, Royo A, Dodig D (2005) A high density genetic map of hexaploid wheat (Triticum aestivum L.) from the cross Chinese Spring × SQ1 and its use to compare QTLs for grain yield across a range of environments. Theor Appl Genet 110:865–880

    Article  CAS  PubMed  Google Scholar 

  • Raun WR, Johnson GV (1999) Improving nitrogen use efficiency for cereal production. Agron J 91:357–363

    Article  Google Scholar 

  • SAS Institute (2004) The SAS system for Windows, release 9.1. SAS Institute, Cary, NC, USA

  • Schmalenbach I, Pillen K (2009) Detection and verification of malting quality QTLs using wild barley introgression lines. Theor Appl Genet 118:1411–1427

    Article  PubMed  Google Scholar 

  • Schmalenbach I, Körber N, Pillen K (2008) Selecting a set of wild barley introgression lines and verification of QTL effects for resistance to powdery mildew and leaf rust. Theor Appl Genet 117:1093–1106

    Article  PubMed  Google Scholar 

  • Schmalenbach I, Léon J, Pillen K (2009) Identification and verification of QTLs for agronomic traits using wild barley introgression lines. Theor Appl Genet 118:483–497

    Article  CAS  PubMed  Google Scholar 

  • Sinclair TR (1998) Historical changes in harvest index crop nitrogen accumulation. Crop Sci 38:638–643

    Article  Google Scholar 

  • Tanksley SD, Nelson JC (1996) Advanced backcross QTL analysis: a method of the simultaneous discovery and transfer of valuable QTLs from unadapted germplasm into elite breeding lines. Theor Appl Genet 92:191–203

    Article  Google Scholar 

  • Thomas WTB, Powell W, Waugh R, Chalmers KJ, Barua UM, Jack P, Lea V, Forster BP, Swanston JS, Ellis RP, Hanson PR, Lance RCM (1995) Detection of quantitative trait loci for agronomic, yield grain and disease characters in spring barley (Hordeum vulgare L.). Theor Appl Genet 91:1037–1047

    Article  CAS  Google Scholar 

  • Tinker NA, Mather DE, Rossnagel BG, Kasha KJ, Kleinhofs A, Hayes PM, Falk DE, Ferguson T, Shugar LP, Legge WG, Irvine RB, Choo TM, Briggs KG, Ullrich SE, Franckowiak JD, Blake TK, Graf RJ, Dofing SM, Maroof MAS, Scoles GJ, Hoffman D, Dahleen LS, Kilian A, Chen F, Biyashev RM, Kudrna DA, Steffenson BJ (1996) Regions of the genome that affect agronomic performance in two-row barley. Crop Sci 36:1053–1062

    Article  Google Scholar 

  • von Korff M, Wang H, Léon J, Pillen K (2004) Development of candidate introgression lines using an exotic barley accession (Hordeum vulgare ssp. spontaneum) as donor. Theor Appl Genet 109:1736–1745

    Article  CAS  Google Scholar 

  • von Korff M, Wang H, Léon J, Pillen K (2005) AB-QTL analysis in spring barley I. Detection of resistance genes against powdery mildew, leaf rust and scald introgressed from wild barley. Theor Appl Genet 111:583–590

    Article  Google Scholar 

  • von Korff M, Wang H, Léon J, Pillen K (2006) AB-QTL analysis in spring barley: II Detection of favourable exotic alleles for agronomic traits introgressed from wild barley (H. vulgare ssp. spontaneum). Theor Appl Genet 112:1221–1231

    Article  Google Scholar 

  • von Korff M, Wang H, Léon J, Pillen K (2008) AB-QTL analysis in spring barley: III Identification of exotic alleles for the improvement of malting quality in spring barley (H. vulgare ssp. spontaneum). Mol Breed 21:81–93

    Article  Google Scholar 

  • Weltzien E, Fischbeck G (1990) Performance and variability of local barley landraces in Near Eastern environments. Plant Breed 104:58–67

    Article  Google Scholar 

  • Xie H, Ji H, Liu Z, Tian G, Wang C, Hu Y, Tang J (2009) Genetic basis of nutritional content of stover in maize under low nitrogen conditions. Euphytica 165:485–493

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Eberhard Laubach (Nordsaat Saatzucht), Dr. Claus Einfeldt (Saatzucht Dr. J. Ackermann), Mr. Josef Breun (Saatzucht Josef Breun) and their teams for conducting the field experiments. The excellent technical assistance of Merle Noschinski, Carsten Golletz and the team of the University of Bonn Experimental Field Station Dikopshof is appreciated. The work was funded by the German Plant Genome Research Initiative (GABI) of the Federal Ministry of Education and Research (BMBF, project 0312278A).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klaus Pillen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saal, B., von Korff, M., Léon, J. et al. Advanced-backcross QTL analysis in spring barley: IV. Localization of QTL × nitrogen interaction effects for yield-related traits. Euphytica 177, 223–239 (2011). https://doi.org/10.1007/s10681-010-0252-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10681-010-0252-6

Keywords

Navigation