Skip to main content
Log in

Hybrid scaffolds enhanced by nanofibers improve in vitro cell behavior for tissue regeneration

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

To construct a biomimetic scaffold with a nanoscale structure similar to that of natural tissue, the objective of this work was to prepare three-dimensional (3D) porous hybrid scaffolds based on gelatin and bacterial cellulose nanofibers for tissue regeneration. The nanofibrous structure, water absorption, and compressive mechanical properties of the scaffolds were studied. The hybrid scaffolds not only give a sufficiently porous structure for efficient nutrient transport and vascularization, but also provide the nanofibrous structure and improve the roughness of the scaffold pore walls. The hybrid scaffolds also exhibit higher modulus as stiffness compared to the pure gelatin scaffold. The viability and morphology of Pig iliac endothelial cells (PIECs) cultured on the 3D scaffolds were examined. PIECs adhered and proliferated better on the stiff hybrid scaffold with nanofibers compared to the soft gelatin scaffold without nanofibers. The results addressed the effect of the nanofibers and the stiffness of scaffolds on cell behavior, and the biomimetic nanofibrous hybrid scaffolds would be highly favorable/desired for tissue regeneration, e.g., skin and urethral regeneration.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Arima Y, Iwata H (2007) Effect of wettability and surface functional groups on protein adsorption and cell adhesion using well-defined mixed self-assembled monolayers. Biomaterials 28:3074–3082

    Article  CAS  Google Scholar 

  • Atala A (2004) Tissue engineering for the replacement of organ function in the genitourinary system. Am J Transpl 4:58–73

    Article  CAS  Google Scholar 

  • Ataollahi F, Pramanik S, Moradi A, Dalilottojari A, Pingguan-Murphy B, Abas WABW, Abu Osman NA (2015) Endothelial cell responses in terms of adhesion, proliferation, and morphology to stiffness of polydimethylsiloxane elastomer substrates. J Biomed Mater Res Part A 103:2203–2213

    Article  CAS  Google Scholar 

  • Bodin A, Ahrenstedt L, Fink H, Brumer H, Risberg B, Gatenholm P (2007) Modification of nanocellulose with a xyloglucan-RGD conjugate enhances adhesion and proliferation of endothelial cells: implications for tissue engineering. Biomacromolecules 8:3697–3704

    Article  CAS  Google Scholar 

  • Bodin A, Bharadwaj S, Wu S, Gatenholm P, Atala A, Zhang Y (2010) Tissue-engineered conduit using urine-derived stem cells seeded bacterial cellulose polymer in urinary reconstruction and diversion. Biomaterials 31:8889–8901

    Article  CAS  Google Scholar 

  • Chan B, Leong K (2008) Scaffolding in tissue engineering: general approaches and tissue-specific considerations. Eur Spine J 17:467–479

    Article  CAS  Google Scholar 

  • Chen F, Yoo JJ, Atala A (1999) Acellular collagen matrix as a possible “off the shelf” biomaterial for urethral repair. Urology 54:407–410

    Article  CAS  Google Scholar 

  • Ding S-J, Shie M-Y, Wei C-K (2011) In vitro physicochemical properties, osteogenic activity, and immunocompatibility of calcium silicate-gelatin bone grafts for load-bearing applications. ACS Appl Mater Interfaces 3:4142–4153

    Article  CAS  Google Scholar 

  • Fagerholm P, Lagali NS, Ong JA, Merrett K, Jackson WB, Polarek JW, Suuronen EJ, Liu Y, Brunette I, Griffith M (2014) Stable corneal regeneration four years after implantation of a cell-free recombinant human collagen scaffold. Biomaterials 35:2420–2427

    Article  CAS  Google Scholar 

  • Hirai A, Inui O, Horii F, Tsuji M (2009) Phase separation behavior in aqueous suspensions of bacterial cellulose nanocrystals prepared by sulfuric acid treatment. Langmuir 25:497–502

    Article  CAS  Google Scholar 

  • Huang Y, Zhu C, Yang J, Nie Y, Chen C, Sun D (2014) Recent advances in bacterial cellulose. Cellulose 21:1–30

    Article  Google Scholar 

  • Jia W, Tang H, Wu J, Hou X, Chen B, Chen W, Zhao Y, Shi C, Zhou F, Yu W (2015) Urethral tissue regeneration using collagen scaffold modified with collagen binding VEGF in a beagle model. Biomaterials 69:45–55

    Article  CAS  Google Scholar 

  • Jin G, He R, Sha B, Li W, Qing H, Teng R, Xu F (2018) Electrospun three-dimensional aligned nanofibrous scaffolds for tissue engineering. Mater Sci Eng C 92:995–1005

    Article  CAS  Google Scholar 

  • Jithendra P, Rajam AM, Kalaivani T, Mandal AB, Rose C (2013) Preparation and characterization of aloe vera blended collagen–chitosan composite scaffold for tissue engineering applications. ACS Appl Mater Interfaces 5:7291–7298

    Article  CAS  Google Scholar 

  • Khan S, Ul-Islam M, Ikram M, Ullah MW, Israr M, Subhan F, Kim Y, Jang JH, Yoon S, Park JK (2016) Three-dimensionally microporous and highly biocompatible bacterial cellulose-gelatin composite scaffolds for tissue engineering applications. RSC Adv 6:110840–110849

    Article  CAS  Google Scholar 

  • Kharaziha M, Nikkhah M, Shin S-R, Annabi N, Masoumi N, Gaharwar AK, Camci-Unal G, Khademhosseini A (2013) PGS: gelatin nanofibrous scaffolds with tunable mechanical and structural properties for engineering cardiac tissues. Biomaterials 34:6355–6366

    Article  CAS  Google Scholar 

  • Kilian KA, Bugarija B, Lahn BT, Mrksich M (2010) Geometric cues for directing the differentiation of mesenchymal stem cells. Proc Natl Acad Sci 107:4872–4877

    Article  CAS  Google Scholar 

  • Kokubo T, Kim H-M, Kawashita M (2003) Novel bioactive materials with different mechanical properties. Biomaterials 24:2161–2175

    Article  CAS  Google Scholar 

  • Kucinska-Lipka J, Gubanska I, Janik H (2015) Bacterial cellulose in the field of wound healing and regenerative medicine of skin: recent trends and future prospectives. Polym Bull 72:2399–2419

    Article  CAS  Google Scholar 

  • Levengood SKL, Zhang M (2014) Chitosan-based scaffolds for bone tissue engineering. J Mater Chem B 2:3161–3184

    Article  CAS  Google Scholar 

  • Li Z, Wang L, Chen S, Feng C, Chen S, Yin N, Yang J, Wang H, Xu Y (2015) Facilely green synthesis of silver nanoparticles into bacterial cellulose. Cellulose 22:373–383

    Article  CAS  Google Scholar 

  • Liu X, Smith LA, Hu J, Ma PX (2009) Biomimetic nanofibrous gelatin/apatite composite scaffolds for bone tissue engineering. Biomaterials 30:2252–2258

    Article  CAS  Google Scholar 

  • Loh QL, Choong C (2013) Three-dimensional scaffolds for tissue engineering applications: role of porosity and pore size. Tissue Eng Part B Rev 19:485–502

    Article  CAS  Google Scholar 

  • Min B-M, Lee G, Kim SH, Nam YS, Lee TS, Park WH (2004) Electrospinning of silk fibroin nanofibers and its effect on the adhesion and spreading of normal human keratinocytes and fibroblasts in vitro. Biomaterials 25:1289–1297

    Article  CAS  Google Scholar 

  • Mohandas A, Anisha B, Chennazhi K, Jayakumar R (2015) Chitosan–hyaluronic acid/VEGF loaded fibrin nanoparticles composite sponges for enhancing angiogenesis in wounds. Colloids Surf B Biointerfaces 127:105–113

    Article  CAS  Google Scholar 

  • Nguyen LT, Chen S, Elumalai NK, Prabhakaran MP, Zong Y, Vijila C, Allakhverdiev SI, Ramakrishna S (2013) Biological, chemical, and electronic applications of nanofibers. Macromol Mater Eng 298:822–867

    Article  CAS  Google Scholar 

  • Ou K, Wu X, Wang B, Meng C, Dong X, He J (2017) Controlled in situ graft polymerization of DMAEMA onto cotton surface via SI-ARGET ATRP for low-adherent wound dressings. Cellulose 24:5211–5224

    Article  CAS  Google Scholar 

  • Park S, Park J, Jo I, Cho S-P, Sung D, Ryu S, Park M, Min K-A, Kim J, Hong S, Hong BH, Kim B-S (2015) In situ hybridization of carbon nanotubes with bacterial cellulose for three-dimensional hybrid bioscaffolds. Biomaterials 58:93–102

    Article  CAS  Google Scholar 

  • Petersen N, Gatenholm P (2011) Bacterial cellulose-based materials and medical devices: current state and perspectives. Appl Microbiol Biotechnol 91:1277

    Article  CAS  Google Scholar 

  • Powell HM, Boyce ST (2006) EDC cross-linking improves skin substitute strength and stability. Biomaterials 27:5821–5827

    Article  CAS  Google Scholar 

  • Pramanik S, Pingguan-Murphy B, Abu Osman NA (2012) Progress of key strategies in development of electrospun scaffolds: bone tissue. Sci Technol Adv Mater 13:043002–043014

    Article  Google Scholar 

  • Schindler M, Ahmed I, Kamal J, Nur-E-Kamal A, Grafe TH, Chung HY, Meiners S (2005) A synthetic nanofibrillar matrix promotes in vivo-like organization and morphogenesis for cells in culture. Biomaterials 26:5624–5631

    Article  CAS  Google Scholar 

  • Selim M, Bullock AJ, Blackwood KA, Chapple CR, MacNeil S (2011) Developing biodegradable scaffolds for tissue engineering of the urethra. BJU Int 107:296–302

    Article  CAS  Google Scholar 

  • Song LJ, Xu YM, Hu XY, Zhang HZ (2008) Urethral substitution using autologous lingual mucosal grafts: an experimental study. BJU Int 101:739–743

    Article  Google Scholar 

  • Stevens MM, George JH (2005) Exploring and engineering the cell surface interface. Science 310:1135–1138

    Article  CAS  Google Scholar 

  • Sunyer R, Jin AJ, Nossal R, Sackett DL (2012) Fabrication of hydrogels with steep stiffness gradients for studying cell mechanical response. PLoS ONE 7:46107–46115

    Article  Google Scholar 

  • Svensson A, Nicklasson E, Harrah T, Panilaitis B, Kaplan D, Brittberg M, Gatenholm P (2005) Bacterial cellulose as a potential scaffold for tissue engineering of cartilage. Biomaterials 26:419–431

    Article  CAS  Google Scholar 

  • Vatankhah E, Prabhakaran MP, Jin G, Mobarakeh LG, Ramakrishna S (2014) Development of nanofibrous cellulose acetate/gelatin skin substitutes for variety wound treatment applications. J Biomater Appl 28:909–921

    Article  Google Scholar 

  • Wang X, Ding B, Li B (2013) Biomimetic electrospun nanofibrous structures for tissue engineering. Mater Today 16:229–241

    Article  CAS  Google Scholar 

  • Wells RG (2008) The role of matrix stiffness in regulating cell behavior. Hepatology 47:1394–1400

    Article  CAS  Google Scholar 

  • Woo KM, Chen VJ, Ma PX (2003) Nano-fibrous scaffolding architecture selectively enhances protein adsorption contributing to cell attachment. J Biomed Mater Res A 67:531–537

    Article  Google Scholar 

  • Xie J, Peng C, Zhao Q, Wang X, Yuan H, Yang L, Li K, Lou X, Zhang Y (2016) Osteogenic differentiation and bone regeneration of iPSC-MSCs supported by a biomimetic nanofibrous scaffold. Acta Biomater 29:365–379

    Article  CAS  Google Scholar 

  • Xu T, Miszuk JM, Zhao Y, Sun H, Fong H (2015) Electrospun polycaprolactone 3D nanofibrous scaffold with interconnected and hierarchically structured pores for bone tissue engineering. Adv Healthc Mater 4:2238–2246

    Article  CAS  Google Scholar 

  • Yang F, Murugan R, Ramakrishna S, Wang X, Ma Y-X, Wang S (2004) Fabrication of nano-structured porous PLLA scaffold intended for nerve tissue engineering. Biomaterials 25:1891–1900

    Article  CAS  Google Scholar 

  • Yang F, Murugan R, Wang S, Ramakrishna S (2005) Electrospinning of nano/micro scale poly(l-lactic acid) aligned fibers and their potential in neural tissue engineering. Biomaterials 26:2603–2610

    Article  CAS  Google Scholar 

  • Yao J, Chen S, Chen Y, Wang B, Pei Q, Wang H (2017) Macrofibers with high mechanical performance based on aligned bacterial cellulose nanofibers. ACS Appl Mater Interfaces 9:20330–20339

    Article  CAS  Google Scholar 

  • Yeh Y-T, Hur SS, Chang J, Wang K-C, Chiu J-J, Li Y-S, Chien S (2012) Matrix stiffness regulates endothelial cell proliferation through septin 9. PLoS ONE 7:46889–46894

    Article  Google Scholar 

  • Yin N, Stilwell MD, Santos TMA, Wang H, Weibel DB (2015) Agarose particle-templated porous bacterial cellulose and its application in cartilage growth in vitro. Acta Biomater 12:129–138

    Article  CAS  Google Scholar 

  • Zhang P, Wu H, Wu H, Lù Z, Deng C, Hong Z, Jing X, Chen X (2011) RGD-conjugated copolymer incorporated into composite of poly (lactide-co-glycotide) and poly (l-lactide)-grafted nanohydroxyapatite for bone tissue engineering. Biomacromolecules 12:2667–2680

    Article  CAS  Google Scholar 

  • Zheng X, Zhang Q, Liu J, Pei Y, Tang K (2016) A unique high mechanical strength dialdehyde microfibrillated cellulose/gelatin composite hydrogel with a giant network structure. RSC Adv 6:71999–72007

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (51573024, 81771523 and 81550008), the Fundamental Research Funds for the Central Universities (17D310612), and DHU Distinguished Young Professor Program.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shiyan Chen, Qingkai Wu or Huaping Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 916 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, B., Huang, C., Chen, S. et al. Hybrid scaffolds enhanced by nanofibers improve in vitro cell behavior for tissue regeneration. Cellulose 25, 7113–7125 (2018). https://doi.org/10.1007/s10570-018-2087-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-018-2087-6

Keywords

Navigation