Skip to main content

Advertisement

Log in

Bacterial cellulose in the field of wound healing and regenerative medicine of skin: recent trends and future prospectives

  • Review
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

In this overview, we focused on the bacterial cellulose (BC) applications, described in recently published scientific papers, in the field of skin regenerative medicine and wound care industry. Bacterial cellulose was proven to be biocompatible with living tissues. Moreover, its mechanical properties and porous structure are considered to be suitable for biomedical applications. It is due to the fact that porous structure of bacterial cellulose mimics the extracellular matrix of the skin. Moreover, it can also hold the incorporated drugs and other modifiers, which can modulate its properties improving the bacterial cellulose antimicrobial activity which is rather poor for native BC. Bacterial cellulose reveals high hydrophilic properties and never dries, which is a desired property, because it was proven that wounds heal better and faster when the wound is being constantly moisturized. This characteristic of bacterial cellulose indicates that it may successfully serve as wound dressings and skin tissue scaffolds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Boateng JS, Matthews KH, Stevens HNE, Eccleston GM (2008) Wound healing dressing and drug delivery systems: a review. J Pharm Sci 97(8):2892

    CAS  Google Scholar 

  2. Zhong SP, Zhang YZ, Lim CT (2010) Tissue scaffolds for skin wound healing and dermal reconstruction. Nanomed Nanobiotechnol. 2(5):510–525

    CAS  Google Scholar 

  3. Yildirimer L, Thanh NTK, Seifalian AM (2012) Skin regeneration scaffolds: a multimodal bottom-up approach. Trends Biotechnol. 30(12):638

    CAS  Google Scholar 

  4. Pham C, Greenwood J, Cleland H, Woodruff P, Madden G (2007) Bioengineered skin substitutes for the management of burns: a systematic review. Burns. 33:946–957

    Google Scholar 

  5. Fu L, Zhou P, Zhang S, Yang G (2013) Evaluation of bacterial naocellulose-based uniform wound dressing for large area skin transplantation. Mater Sci Eng C 33:2995–3000

    CAS  Google Scholar 

  6. Gurtner GC, Werner S, Barrandon Y, Longaker MT (2008) Wound repair and regeneration. Nature 453(7193):314–321

    CAS  Google Scholar 

  7. MacNeil S (2007) Progress and opportunities for tissue-engineered skin. Nature 445(7130):874–880

    CAS  Google Scholar 

  8. Esa F, Tasirin SM, Rahman NA (2014) ST26943, 2nd international conference on agricultural and food engineering, CAFEi2014. Overview of bacterial cellulose production and application. Agric Agric Sci Proc 2:113–119

    Google Scholar 

  9. Kobayashi S, Kashiwa K, Kawasaki T, Shoda S (1991) Novel method for polysaccharide synthesis using an enzyme: the first in vitro synthesis of cellulose via a nonbiosynthetic path utilizing cellulase as catalyst. J Am Chem Soc 113: 3079–3084

    CAS  Google Scholar 

  10. Nakatsubo F, Kamitakahra H, Hori M (1996) Cationic ring-opening polymerization of 3,6-di-O-benzyl-alfa-d-glucose 1,2,4-orthopivalate and the first chemical synthesis of cellulose. J Am Chem Sci. 118(7):1677–1681

    CAS  Google Scholar 

  11. Takayasu T, Fumihiro Y (1997) Production of bacterial cellulose by agitation culture systems. Pure Appl Chem 69(11):2453–2458

    Google Scholar 

  12. Eichhorn SJ, Baillaie CA, Zafeiropoulos N, Mwaikambo LY, Ansell MP, Dufresne A et al (2001) Review current international research into cellulosic fibers and composites. J Mater Sci 36(9):2107–2131

    CAS  Google Scholar 

  13. Iguchi M, Yamanaka S, Budhiono A (2000) Bacterial cellulose—a masterpiece of nature’s arts. J Mater Sci 35:261–270

    CAS  Google Scholar 

  14. Okiyama A, Motoki M, Yamanaka S (1992) Bacterial cellulose II: processing of the gelatinous cellulose for food materials. Food Hydrocoll. 6:479–487

    CAS  Google Scholar 

  15. Yamanaka S, Watanabe K, Kitamura N, Iguchi M, Mitsuhashi S, Nishi Y et al (1989) The structure and mechanical properties of sheets prepared from bacterial cellulose. J Mater Sci 24:3141–3145

    CAS  Google Scholar 

  16. Festucci-Buselli RA, Otoni WC, Joshi CP (2007) Structure, organization and functions of cellulose synthase complexes in higher plants. Braz J Plant Physiol 19(1):1–13

    CAS  Google Scholar 

  17. Svensson A, Nicklasson E, Harrah T, Panilaitis B, Kaplan DL, Brittberg M et al (2005) Bacterial cellulose as a potential scaffold for tissue engineering of cartilage. Biomaterials 26:419–431

    CAS  Google Scholar 

  18. Bodin A, Concaro S, Brittberg M, Gatenholm P (2007) Bacterial cellulose as a potential meniscus implant. J Tissue Eng Regen Med. 1:406–408

    CAS  Google Scholar 

  19. Klemm D, Schumann D, Udhardt U, Marsch S (2001) Bacterial synthesized cellulose-artificial blood vessels for microsurgery. Prog Polym Sci 26:1561–1603

    CAS  Google Scholar 

  20. Backdahl H, Helenius G, Bodin A, Nannmark U, Johansson BR, Risberg B et al (2006) Mechanical properties of bacterial cellulose and interactions with smooth muscle cells. Biomaterials 27:2141–2149

    Google Scholar 

  21. Backdahl H, Esguerra M, Delbro D, Risberg B, Gatenholm P (2008) Engineering microporosity in bacterial cellulose scaffolds. J Tissue Eng Reg Med. 2:320–330

    Google Scholar 

  22. Wippermann J, Schumann D, Klemm D, Kosmehl H, Salehi-Gelani S, Wahlers T (2009) Preliminary results of small arterial substitute performed with a new cylindrical biomaterial composed of bacterial cellulose. Eur J Vasc Endovasc Surg 37:592–596

    CAS  Google Scholar 

  23. Novaes ABJ, Novaes AB, Grissi MFM, Soares UN, Gabarra F (1993) Gengiflex, an alkali-cellulose membrane for GTR: histologic observations. Braz Dent J. 4:65–71

    Google Scholar 

  24. Novaes ABJ, Novaes AB (1997) Soft tissue management for primary closure in guided bone regeneration: surgical technique and case report. Int J Oral Maxillofac Implants 12:84–87

    Google Scholar 

  25. Salata LA, Craig GT, Brook IM (1995) In vivo evaluation of a new membrane (gengiflex) for guided bone regeneration (GBR). J Dent Res 74:825

    Google Scholar 

  26. Maneerung T, Tokura S, Rujiravanit R (2008) Impregnation of silver nanoparticles into bacterial cellulose for antimicrobial wound dressing. Carbohydr Polym 72:43–51

    CAS  Google Scholar 

  27. Fontana JD, de Souza AM, Fontana CK, Torriani IL, Moreschi JC, Gallotti BJ et al (1990) Acetobacter cellulose pellicle as a temporary skin substitute. Apply Biochem Biotechnol. 25–25:253–264

    Google Scholar 

  28. Sokolnicki AM, Fisher RJ, Harrah T, Kaplan DL (2006) Permeability of bacterial cellulose membranes. J Membr Sci 272:15–27

    CAS  Google Scholar 

  29. Amin MCIM, Ahmad N, Halib N, Ahmad I (2012) Synthesis and characterization of thermo- and pH-responsive bacterial cellulose/acrylic acid hydrogels for drug delivery. Carbohydr Polym 88:465–473

    Google Scholar 

  30. Yano H, Sugiyama J, Nakagaito AN, Nogi M, Matsuura T, Hikita M et al (2005) Optically transparent composites reinforced with networks of bacterial nanofibers. Adv Mater 17:153–155

    CAS  Google Scholar 

  31. Brown RMJ, Willison JHM, Richardson CL (1976) Cellulose biosynthesis in Acetobacter xylinum: visualization of the site of synthesis and direct measurement of the in vivo process. Proc Natl Acad Sci 73:4565–4569

    CAS  Google Scholar 

  32. Rambo CR, Recouvreux DOS, Carminatti CA, Pitlovanciv AK, Antonio RV, Porto LM (2008) Template assisted synthesis of porous nanofibrous cellulose membranes for tissue engineering. Mater Sci Eng C 28:549–554

    CAS  Google Scholar 

  33. Herrick FW, Casebier RL, Hamilton JK, Sandberg KR (1983) Microfibrillated cellulose: morphology and accessibility. J Apply Polym Sci Appl Polym Symp. 37:797–813

    CAS  Google Scholar 

  34. Cannon RE, Anderson SM (1991) Biogenesis of bacterial cellulose. Crit Rev Microbiol. 17(6):435–447

    CAS  Google Scholar 

  35. Nashiyama Y (2009) Structure and properties of the cellulose microfibril. J Wood Sci. 55:241–249

    Google Scholar 

  36. O’Sullivan AC (1997) Cellulose: the structure slowly unravels. Cellulose 4:173–207

    Google Scholar 

  37. Matsuo M, Sawatari C, Iwai Y, Ozaki F (1990) Effect of orientation distribution and crystallinity on the measurement by X-ray diffraction of the crystal lattice moduli of cellulose I and II. Macromol. 23:3266–3275

    CAS  Google Scholar 

  38. Czaja W, Krystynowicz A, Bielecki S, Brown MRJ (2006) Microbial cellulose—the natural power to heal wounds. Biomaterials 27:145–151

    CAS  Google Scholar 

  39. Tanskul S, Amornthatree K, Jaturonlak N (2013) A new cellulose-producing bacterium, Rhodococcus Sp. MI2: screening and optimization of culture conditions. Carbohydr Polym 92(1):421–428

    CAS  Google Scholar 

  40. Budhiono A, Rosidi B, Taher H, Iguchi M (1999) Kinetic aspects of bacterial cellulose formation in nata-de-coco culture system. Carbohydr Polym 40:137–143

    CAS  Google Scholar 

  41. Borzani W, Souza SJ (1995) Mechanism of the film thickness increasing during the bacterial production of cellulose on non-agitated liquid media. Biotechnol Lett. 17:1271–1272

    CAS  Google Scholar 

  42. Cakar F, Ozer I, Aytekin AO, Sahin F (2014) Improvement production of bacterial cellulose by semi-continous process in molasses medium. Carbohydr Polym 106:7–17

    CAS  Google Scholar 

  43. Kurosumi A, Sasaki CYY, Nakamura Y (2009) Utilization of various fruit juices as carbon source for production of bacterial cellulose by Acetobacter xylinum NBRC 13693. Carbohydr Polym 76(2):333–335

    CAS  Google Scholar 

  44. Gomes FP, Silva NHCS, Trovatti E, Serafim LS, Duarte MF et al (2013) Production of bacterial cellulose by Gluconacetobacter sacchari using dry olive mill residue. Biomass Bioenergy 55:205–211

    CAS  Google Scholar 

  45. Lin D, Lopez-Sanchez P, Li R, Li Z (2014) Production of bacterial cellulose by Gluconobacter hansenii CGMCC 3917 using only waste beer yeast as nutrient source. Bioresour Technol 151:113–119

    CAS  Google Scholar 

  46. Carreira P, Mendes JAS, Trovatti E, Serafim LS, Freire CSR et al (2011) Utilization of residues from agro-forest industries in the production of high value bacterial cellulose. Bioresour Technol 102:7354–7360

    CAS  Google Scholar 

  47. Zeng X, Small DP, Wan W (2011) Statistical optimization of culture conditions for bacterial cellulose production by Acetobacter xylinum Bpr 2001 from mapla syrup. Carbohydr Polym 85(3):506–513

    CAS  Google Scholar 

  48. Chawla PR, Bajaj IB, Survase SA, Singhal RS (2009) Microbial cellulose: fermentative production and Applications. Food Technol Biotechnol. 47(2):107–124

    CAS  Google Scholar 

  49. Szot CS, Buchmann CF, Gatenholm P, Rylander MN, Freeman JW (2011) Investigation of cancer cell behavior on nanofibrous scaffolds. Mater Sci Eng C 31:37–42

    CAS  Google Scholar 

  50. Langer R, Vacanti JP (1993) Tissue engineering. Science 260(5110):920–926

    CAS  Google Scholar 

  51. Backdahl H, Helenius G, Bodin A, Nannmark U, Johansson BR, Risberg B et al (2006) Mechanical properties of bacterial cellulose and interactions with smooth muscle cells. Biomaterials 27(9):2141–2149

    Google Scholar 

  52. Helenius G, Backdahl H, Bodin A, Nannmark U, Gatenholm P, Risberg B (2006) In vivo biocompatibility of bacterial cellulose. J Biomed Mater Res A. 76(2):431–438

    Google Scholar 

  53. Petersen N, Gatenholm P (2011) Bacterial cellulose-based materials and medical devices: current state and perspectives. Appl Microbiol Biotechnol 91(5):1277–1286

    CAS  Google Scholar 

  54. Jeong SI, Lee SE, Yang H, Jin YH, Park CS, Park YS (2010) Toxicologic evaluation of bacterial synthesized cellulose in endothelial cells and animals. Mol Cell Toxicol. 6:373–380

    Google Scholar 

  55. Lin Q, Zheng Y, Ren L, Wu J, Wang H, An J et al (2014) Preparation and characteristic of a sodium alginate/carboxymethylated bacterial cellulose composite with crosslinking semi-interpenetrating network. J Appl Polym Sci 131(3):3948–3957

    Google Scholar 

  56. Demitras Y, Yagmur C, Soylemez F, Ozturk N, Demir A (2010) Management of split-thickness skin graft donor site: a prospective clinical trial for comparison of five different dressing materials. Burns. 36:99–1005

    Google Scholar 

  57. Chen HH, Lin SB, Hsu CP, Chen LC (2013) Modifying bacterial cellulose with gelatin peptides for improved rehydratation. Cellulose 20:1967–1977

    CAS  Google Scholar 

  58. Cho LAR, Leem H, Lee J, Park KC (2005) Reversal of silver sulfadiazine-impaired wound healing by epidermal growth factor. Biomaterials 26:4670–4676

    Google Scholar 

  59. Kennedy P, Brammah S, Willis E (2010) Biofilm and a new appraisal of burn wound sepsis. Burns. 36:49–56

    Google Scholar 

  60. Elsner JJ, Berdicevsky I, Zilberman M (2011) In vitro microbial inhibition and cellular response to novel biodegradable composite wound dressing with controlled release of antibiotics. Acta Biomater 7:325–336

    CAS  Google Scholar 

  61. Ovington LG, Pierce B (2001) Wound dressings: form, function, feasibility and facts. In: Krasner D, Rodeheaver G, Sibbald G (eds) Chronic wound care: a clinical source book for healthcare professionals. Management Publications Inc, Wayne, pp 311–319

  62. Robson MC (1997) Wound infection: a failure of wound healing caused by an imbalance of bacteria. Surg Clin N Am 77:637–650

    CAS  Google Scholar 

  63. Pinto JBR, Daina S, Sadocco P, Neto CPN, Trindade T (2013) Antibacterial activity of nanocomposites of copper and cellulose. BioMed Res Int. 2013:280512

    Google Scholar 

  64. Pinto RJB, Marques PAAP, Neto PC, Trindade T, Daina S, Sadocco P (2009) Antibacterial activity of nanocomposites of silver and bacterial or vegetable cellulosic fibers. Acta Biomater 5:2279–2289

    CAS  Google Scholar 

  65. Yang G, Xie JJ, Hong F, Cao ZJ, Yang XX (2012) Antimicrobial activity of silver nanoparticle impregnated bacterial cellulose membrane: effect of fermentation carbon sources of bacterial cellulose. Carbohydr Polym 84:533–538

    Google Scholar 

  66. Maria LCS, Santos ALC, Oliveira PC, Valle ASS (2010) Preparation and antibacterial activity of silver nanoparticles impregnated in bacterial cellulose. Polimeros 20(1):72–77

    CAS  Google Scholar 

  67. Hu WL, Chen SY, Li X, Shi SK, Shen W, Zhang X et al (2009) In situ synthesis of silver chloride nanoparticles into bacterial cellulose membranes. Mater Sci Eng C 29:1216–1219

    CAS  Google Scholar 

  68. Wei B, Yang G, Hong F (2011) Preparation and evaluation of a kind of bacterial cellulose dry films with antibacterial properties. Carbohydr Polym 84:533–538

    CAS  Google Scholar 

  69. Kim J, Cai Z, Chen Y (2010) Biocompatible bacterial cellulose composites for biomedical application. J Nanotechnol Eng Med 1:011006

    Google Scholar 

  70. Dash M, Chiellini F, Ottenbrite RM, Chiellini E (2011) Chitosan—a versatile semi-synthetic polymer in biomedical applications. Prog Polym Sci 36:981–1014

    CAS  Google Scholar 

  71. Khor E, Lim LY (2003) Implantable applications of chitin and chitosan. Biomaterials 24:2339–2349

    CAS  Google Scholar 

  72. Pillai CKS, Paul W, Sharma CP (2009) Chitin and chitosan polymers: chemistry, solubility and fiber formation. Prog Polym Sci 34:641–678

    CAS  Google Scholar 

  73. Zhijiang C, Kim J (2010) Bacterial cellulose/poly(ethylene glycol) composite: characterization and first evaluation of biocompatibility. Cellulose 17:83–91

    Google Scholar 

  74. Lin WC, Lien CC, Yeh HJ, Yu CM, Hsu SH (2013) Bacterial cellulose and bacterial cellulose–chitosan membranes for wound dressing applications. Carbohydr Polym 94:603–611

    CAS  Google Scholar 

  75. Luan J, Wu J, Zheng Y, Song W, Wang G, Guo J et al (2012) Impregnation of silver sulfadiazine into bacterial cellulose for antimicrobial and biocompatible wound dressing. Biomed Mater 7:065006

    Google Scholar 

  76. Atiyeh BS, Costagliola M, Hayek SN, Dibo SA (2007) Effect of silver on burn wound infection control and healing: review of the literature. Burns. 33:139–148

    Google Scholar 

  77. Heimbach D, Mann R, Engrav L (2002) Evaluation of the burn wound management decisions. Total burn care, 2nd edn. Saunders, New York

    Google Scholar 

  78. Seetharaman S, Natesan S, Stowers RS, Mullens C, Baer DG, Suggs LJ et al (2011) A PEGylated fibrin-based wound dressing with antimicrobial and angiogenic activity. Acta Biomaters. 7:2787–2796

    CAS  Google Scholar 

  79. Konrad D, Tsunoda M, Weber K, Corney SJ, Ullmann L (2001) Effects of a topical silver sulfadiazine polyurethane dressing (Mikacure) on wound healing in experimentally infected wounds in the pig. J Exp Anim Sci 42:31–43

    Google Scholar 

  80. Modak SM, Fox CL (1973) Binding of silver sulfadiazine to the cellular components of Pseudomonas aeruginosa. Biochem Pharmacol 22:2391–2404

    CAS  Google Scholar 

  81. Klasen HJ (2000) A historical review of the use of silver in the treatment of burns: II. Renewed interest for silver. Burns. 26:131–138

    CAS  Google Scholar 

  82. Kumar A, Vemula PK, Ajayan PM, John G (2008) Silver-nanoparticle-embedded antimicrobial paints based on vegetable oil. Nat Mater. 7:236–241

    CAS  Google Scholar 

  83. Damm C, Munsted H, Rosch A (2007) Long-term antimicrobial polyamide 6/silver-nanocomposites. J Mater Sci 42:6067–6073

    CAS  Google Scholar 

  84. Cho KH, Park JE, Osaka T, Park SG (2005) The study of antimicrobial activity and preservative effects of nanosilver ingredient. Electrochim Acta 51:956–960

    CAS  Google Scholar 

  85. Precival SL, Bowler PG, Russell D (2005) Bacterial resistance to silver in wound care. J Hosp Inf. 60:1–7

    Google Scholar 

  86. Wright JB, Lam K, Hansen D, Burrell RE (2004) Optical and structural studies of silver nanoparticles. Rad Phys Chem. 27(4):344–350

    Google Scholar 

  87. Cai J, Kimura S, Wada M, Kuga S (2009) Nanoporous cellulose as metal nanoparticles support. Biomacromol. 10:87–94

    CAS  Google Scholar 

  88. Ifku S, Tsuji M, Morimoto M, Saimoto H, Yano H (2009) Synthesis of silver nanoparticles templated by TEMPO-mediated oxidized bacterial cellulose nanofibers. Biomacromol. 10:2714–2717

    Google Scholar 

  89. Barud H, Regiani T, Marques RC, Lustri WR, Messaddeq Y, Ribeiro SJL (2011) Antimicrobial bacterial cellulose–silver nanoparticles composite membranes. J Nanomater. 2011:1–8

    Google Scholar 

  90. de Santa MLC, Santos ALC, Oliveira PC, Barud HS, Messaddeq Y, Ribeiro SJL (2009) Synthesis and characterization of silver nanoparticles impregnated into bacterial cellulose. Mater Lett 63:797–799

    Google Scholar 

  91. Sureshkumar M, Siswanto DY, Lee CK (2010) Magnetic antimicrobial nanocomposite based on bacterial cellulose and silver nanoparticles. J Mater Chem 20:6948–6955

    CAS  Google Scholar 

  92. Cohen SY, Quentel G, Egasse D, Cadot M, Ingster-moati I, Coscas GJ (1993) The dark choroid in systemic argyrosis. Retina. 13:312–316

    CAS  Google Scholar 

  93. Rosenman K, Moss A, Kon S (1979) Argyria: clinical implications of exposure of silver nitrate and silver oxide. J Occup Med. 21:430–435

    CAS  Google Scholar 

  94. Ahmed M, Karns M, Goodson M, Rowe J, Hussain SM, Schlager JJ et al (2008) DNA damage response to different surface chemistry of silver nanoparticles in mammalian cells. Toxicol Appl Pharm. 233:404–410

    Google Scholar 

  95. Wu J, Zheng Y, Wen X, Lin Q, Chen X, Wu Z (2014) Silver nanoparticle/bacterial cellulose gel membranes for antibacterial wound dressing: investigation in vitro and in vivo. Biomed Mater 9:035005

    Google Scholar 

  96. Wu J, Zheng Y, Song W, Luan J, Wen X, Wu Z et al (2014) In situ synthesis of silver-nanoparticles/bacterial cellulose composites for slow-released antimicrobial wound dressing. Carbohydr Polym 102:762–771

    CAS  Google Scholar 

  97. AshaRani PV, Mun GLK, Hande MP, Valiyaveettil S (2009) Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano 3(2):279–290

    CAS  Google Scholar 

  98. Park MV, Neigh AM, Vermulen JP, de la Fonteyene LJ, Verharen HW et al (2011) The effect of particle size on the cytotoxicity, inflammation, developmental toxicity and genotoxicity of silver nanoparticles. Biomaterials 32(36):9810–9817

    CAS  Google Scholar 

  99. Cady NC, Behnke JL, Strickland AD (2011) Copper-based nanostructured coatings on natural cellulose: nanocomposites exhibiting rapid and efficient inhibition of a multi-drug resistant wound pathogen, A baumannii, and mammalian cell biocompatibility in vitro. Adv Funct Mate. 21(13):2506–2514

    CAS  Google Scholar 

  100. Turnlund JR (1998) Human whole-body copper metabolism. Am J Clinic Nutr. 67(5):960S–964S

    CAS  Google Scholar 

  101. Yoon KY, Byeon JH, Park JH, Hwang J (2007) Susceptibility constant of Escherichia coli and Bacillus subtilis to silver and copper nanoparticles. Sci Total Environ 373(2–3):572–575

    CAS  Google Scholar 

  102. Pinto RJB, Neves MC, Pascoal NTT (2012) Growth and chemical stability of copper nanostructures on cellulose fibers. Eur J Inorg Chem 31:5043–5049

    Google Scholar 

  103. Rovee DT (2003) Wounds: a compendium of clinical research and practice. Wounds. 15(6):A10

    Google Scholar 

  104. Park SU, Lee BK, Kim MS, Park KK, Sung WJ, Kim HY et al (2014) The possibility of microbial cellulose for dressing and scaffold materials. Int Wound J. 11(1):35–43

    Google Scholar 

  105. Ramakrishna S, Mayer J, Wintermantel E, Leong KW (2001) Biomedical applications of polymer-composite materials: a review. Compos Sci Technol 61:1189–1224

    CAS  Google Scholar 

  106. Alberto S, Giovanni T, Anna MB, Erinestina SP, Elena S, Bruni M (2001) Characterization of native cellulose/poly(ethylene glycol) films. Macromol Mater Eng 286:524–538

    Google Scholar 

  107. Zhijiang C, Guang Y, Kim J (2011) Biocompatible nanocomposites prepared by impregnating bacterial cellulose nanofibrils into poly(3-hydroxybutyrate). Curr Appl Phys 11:247–249

    Google Scholar 

  108. Zhijiang C, Changwei H, Guang Y (2012) Poly(3-hydroxybutyrate-co-4-hydroxybutyrate)/bacterial cellulose composite porous scaffold: preparation, characterization and biocompatybility. Carbohydr Polym 87:1073–1080

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Kucińska-Lipka.

Additional information

All the authors have equal contribution to this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kucińska-Lipka, J., Gubanska, I. & Janik, H. Bacterial cellulose in the field of wound healing and regenerative medicine of skin: recent trends and future prospectives. Polym. Bull. 72, 2399–2419 (2015). https://doi.org/10.1007/s00289-015-1407-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-015-1407-3

Keywords

Navigation