Skip to main content

Advertisement

Log in

Recent advances in bacterial cellulose

  • Review Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Bacterial cellulose (BC) produced by some microorganisms has been widely accepted as a multifunctional nano-biomaterial. It is composed of linear glucan molecules attached with hydrogen bonds, which appears similar to plant cellulose. However, when compared with other conventional natural or synthesized counterparts, BC performs better in areas such as biomedicine, functional devices, water treatment, nanofillers, etc. for its distinct superior chemical purity, crystallinity, biocompatibility, and ultrafine network architecture. When BC is incorporated in a material or used as a scaffold, novel features result that are related to BC’s intrinsic characteristics mentioned above. This review mainly summarizes the recent developments of the functional products fabricated with BC. Besides, the controllable cultivation conditions should also be discussed for expecting to make a breakthrough in its productivity. We highlight the literatures mainly in last 5 years, exerting ourselves to provide the state-of-the-art opinions in areas wherever are focused on for BC researching.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

References

  • Alvarez OM, Patel M, Booker J, Markowitz L (2004) Effectiveness of a biocellulose wound dressing for the treatment of chronic venous leg ulcers: results of a single center randomized study involving 24 patients. Wounds 16(7):224–233

    Google Scholar 

  • Andrade FK, Costa R, Domingues L, Soares R, Gama M (2010) Improving bacterial cellulose for blood vessel replacement: functionalization with a chimeric protein containing a cellulose-binding module and an adhesion peptide. Acta Biomater 6(10):4034–4041

    CAS  Google Scholar 

  • Andrade FK, Silva JP, Carvalho M, Castanheira EMS, Soares R, Gama M (2011) Studies on the hemocompatibility of bacterial cellulose. J Biomed Mater Res A 98A(4):554–566

    CAS  Google Scholar 

  • Astley OM, Chanliaud E, Donald AM, Gidley MJ (2003) Tensile deformation of bacterial cellulose composites. Int J Biol Macromol 32(1):28–35

    CAS  Google Scholar 

  • Atalla RH, Vanderhart DL (1984) Native cellulose: a composite of two distinct crystalline forms. Science 223(4633):283–285

    CAS  Google Scholar 

  • Aveyard R, Binks BP, Clint JH (2003) Emulsions stabilised solely by colloidal particles. Adv Colloid Interface Sci 100:503–546

    Google Scholar 

  • Azizi Samir MAS, Alloin F, Sanchez J-Y, El Kissi N, Dufresne A (2004) Preparation of cellulose whiskers reinforced nanocomposites from an organic medium suspension. Macromolecules 37(4):1386–1393

    Google Scholar 

  • Azizi Samir MAS, Alloin F, Dufresne A (2005) Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromolecules 6(2):612–626

    Google Scholar 

  • Bäckdahl H, Helenius G, Bodin A, Nannmark U, Johansson BR, Risberg B, Gatenholm P (2006) Mechanical properties of bacterial cellulose and interactions with smooth muscle cells. Biomaterials 27(9):2141–2149

    Google Scholar 

  • Bäckdahl H, Esguerra M, Delbro D, Risberg B, Gatenholm P (2008) Engineering microporosity in bacterial cellulose scaffolds. J Tissue Eng Regen Med 2(6):320–330

    Google Scholar 

  • Bäckdahl H, Risberg B, Gatenholm P (2011) Observations on bacterial cellulose tube formation for application as vascular graft. Mater Sci Eng, C 31(1):14–21

    Google Scholar 

  • Bapiraju K, Sujatha P, Ellaiah P, Ramana T (2005) Mutation induced enhanced biosynthesis of lipase. Afr J Biotechnol 3(11):618–621

    Google Scholar 

  • Barud H, Assunção R, Martines M, Dexpert-Ghys J, Marques R, Messaddeq Y, Ribeiro S (2008) Bacterial cellulose-silica organic-inorganic hybrids. J Sol Gel Sci Technol 46(3):363–367

    CAS  Google Scholar 

  • Basta A, El-Saied H (2009) Performance of improved bacterial cellulose application in the production of functional paper. J Appl Microbiol 107(6):2098–2107

    CAS  Google Scholar 

  • Beck-Candanedo S, Roman M, Gray DG (2005) Effect of reaction conditions on the properties and behavior of wood cellulose nanocrystal suspensions. Biomacromolecules 6(2):1048–1054

    CAS  Google Scholar 

  • Bhatnagar A, Sain M (2005) Processing of cellulose nanofiber-reinforced composites. J Reinf Plast Comp 24(12):1259–1268

    CAS  Google Scholar 

  • Bielecki S, Krystynowicz A, Turkiewicz M, Kalinowska H (2005) Bacterial Cellulose. In: Biopolymers Online. Wiley-VCH Verlag GmbH & Co. KGaA. doi:10.1002/3527600035.bpol5003

  • Binks BP (2002) Particles as surfactants-similarities and differences. Curr Opin Colloid Interface Sci 7(1):21–41

    CAS  Google Scholar 

  • Bodin A, Ahrenstedt L, Fink H, Brumer H, Risberg B, Gatenholm P (2007a) Modification of nanocellulose with a xyloglucan-RGD conjugate enhances adhesion and proliferation of endothelial cells: implications for tissue engineering. Biomacromolecules 8(12):3697–3704

    CAS  Google Scholar 

  • Bodin A, Bäckdahl H, Fink H, Gustafsson L, Risberg B, Gatenholm P (2007b) Influence of cultivation conditions on mechanical and morphological properties of bacterial cellulose tubes. Biotechnol Bioeng 97(2):425–434

    CAS  Google Scholar 

  • Brown AJ (1886) XLIII-on an acetic ferment which forms cellulose. J Chem Soc Trans 49:432–439

    CAS  Google Scholar 

  • Brown RM (2004) Cellulose structure and biosynthesis: what is in store for the 21st century? J Polym Sci Part A Polym Chem 42(3):487–495

    CAS  Google Scholar 

  • Brown RM, Willison J, Richardson CL (1976) Cellulose biosynthesis in Acetobacter xylinum: visualization of the site of synthesis and direct measurement of the in vivo process. Proc Natl Acad Sci 73(12):4565–4569

    CAS  Google Scholar 

  • Brown EE, Laborie M-PG, Zhang J (2012) Glutaraldehyde treatment of bacterial cellulose/fibrin composites: impact on morphology, tensile and viscoelastic properties. Cellulose 19(1):127–137

    CAS  Google Scholar 

  • Cai Z, Yang G (2011) Optical nanocomposites prepared by incorporating bacterial cellulose nanofibrils into poly (3-hydroxybutyrate). Mater Lett 65(2):182–184

    CAS  Google Scholar 

  • Cai Z, Hou C, Yang G, Kim J (2011a) Bacterial cellulose as a template for the formation of polymer/nanoparticle nanocomposite. Am Soc Mech Eng 2(3)

  • Cai Z, Yang G, Kim J (2011b) Biocompatible nanocomposites prepared by impregnating bacterial cellulose nanofibrils into poly (3-hydroxybutyrate). Curr Appl Phys 11(2):247–249

    Google Scholar 

  • Carreira P, Mendes JA, Trovatti E, Serafim LS, Freire CS, Silvestre AJ, Neto CP (2011) Utilization of residues from agro-forest industries in the production of high value bacterial cellulose. Bioresour Technol 102(15):7354–7360

    CAS  Google Scholar 

  • Chan H, Ho P, Ng S, Tan B, Tan K (1995) A new water-soluble, self-doping conducting polyaniline from poly (o-aminobenzylphosphonic acid) and its sodium salts: synthesis and characterization. J Am Chem Soc 117(33):8517–8523

    CAS  Google Scholar 

  • Chao Y, Ishida T, Sugano Y, Shoda M (2000) Bacterial cellulose production by Acetobacter xylinum in a 50-L internal-loop airlift reactor. Biotechnol Bioeng 68(3):345–352

    CAS  Google Scholar 

  • Chen S, Shen W, Yu F, Wang H (2009a) Kinetic and thermodynamic studies of adsorption of Cu2+ and Pb2+ onto amidoximated bacterial cellulose. Polym Bull 63(2):283–297

    CAS  Google Scholar 

  • Chen S, Zou Y, Yan Z, Shen W, Shi S, Zhang X, Wang H (2009b) Carboxymethylated-bacterial cellulose for copper and lead ion removal. J Hazard Mater 161(2):1355–1359

    CAS  Google Scholar 

  • Chen P, Yun YS, Bak H, Cho SY, Jin H-J (2010a) Multiwalled carbon nanotubes-embedded electrospun bacterial cellulose nanofibers. Mol Cryst Liq Cryst 519(1):169–178

    CAS  Google Scholar 

  • Chen S, Shen W, Yu F, Hu W, Wang H (2010b) Preparation of amidoximated bacterial cellulose and its adsorption mechanism for Cu2+ and Pb2+. J Appl Polym Sci 117(1):8–15

    CAS  Google Scholar 

  • Cheng K-C, Catchmark JM, Demirci A (2009) Enhanced production of bacterial cellulose by using a biofilm reactor and its material property analysis. J Biol Eng 3:12

    Google Scholar 

  • Cheng K-C, Catchmark JM, Demirci A (2011) Effects of CMC addition on bacterial cellulose production in a biofilm reactor and its paper sheets analysis. Biomacromolecules 12(3):730–736

    CAS  Google Scholar 

  • Chiaoprakobkij N, Sanchavanakit N, Subbalekha K, Pavasant P, Phisalaphong M (2011) Characterization and biocompatibility of bacterial cellulose/alginate composite sponges with human keratinocytes and gingival fibroblasts. Carbohyd Polym 85(3):548–553

    CAS  Google Scholar 

  • Choi CN, Song HJ, Kim MJ, Chang MH, Kim SJ (2009) Properties of bacterial cellulose produced in a pilot-scale spherical type bubble column bioreactor. Korean J Chem Eng 26(1):136–140

    CAS  Google Scholar 

  • Conner AH (1995) Handbook of Size Exclusion Chromatography. In: Wu C (ed) Size exclusion chromatography of cellulose and cellulose derivatives. Marcel Dekker, New York, pp 331–352

    Google Scholar 

  • Czaja W, Romanovicz D, Malcolm Brown R (2004) Structural investigations of microbial cellulose produced in stationary and agitated culture. Cellulose 11(3–4):403–411

    CAS  Google Scholar 

  • Czaja W, Krystynowicz A, Bielecki S, Brown RM Jr (2006) Microbial cellulose-the natural power to heal wounds. Biomaterials 27(2):145–151

    CAS  Google Scholar 

  • de Olyveira GM, Valido DP, Costa LMM, Gois PBP, Filho LX, Basmaji P (2011) First otoliths/collagen/bacterial cellulose nanocomposites as a potential scaffold for bone tissue regeneration. J Biomater Nanobiotechnol 2(3):239–243

    Google Scholar 

  • de Souza FC, Olival-Costa H, da Silva L, Pontes PA, Lancellotti CLP (2011) Bacterial cellulose as laryngeal medialization material: an experimental study. J Voice 25(6):765–769

    Google Scholar 

  • Dong XM, Revol J-F, Gray DG (1998) Effect of microcrystallite preparation conditions on the formation of colloid crystals of cellulose. Cellulose 5(1):19–32

    CAS  Google Scholar 

  • Eichhorn S, Baillie C, Zafeiropoulos N, Mwaikambo L, Ansell M, Dufresne A, Entwistle K, Herrera-Franco P, Escamilla G, Groom L (2001) Review: current international research into cellulosic fibres and composites. J Mater Sci 36(9):2107–2131

    CAS  Google Scholar 

  • El-Saied H, El-Diwany AI, Basta AH, Atwa NA, El-Ghwas DE (2008) Production and characterization of economical bacterial cellulose. Bioresources 3(4):1196–1217

    CAS  Google Scholar 

  • Esguerra M, Fink H, Laschke MW, Jeppsson A, Delbro D, Gatenholm P, Menger MD, Risberg B (2010) Intravital fluorescent microscopic evaluation of bacterial cellulose as scaffold for vascular grafts. J Biomed Mater Res A 93(1):140–149

    Google Scholar 

  • Fink H, Faxälv L, Molnar GF, Drotz K, Risberg B, Lindahl TL, Sellborn A (2010) Real-time measurements of coagulation on bacterial cellulose and conventional vascular graft materials. Acta Biomater 6(3):1125–1130

    CAS  Google Scholar 

  • Fink H, Ahrenstedt L, Bodin A, Brumer H, Gatenholm P, Krettek A, Risberg B (2011) Bacterial cellulose modified with xyloglucan bearing the adhesion peptide RGD promotes endothelial cell adhesion and metabolism—a promising modification for vascular grafts. J Tissue Eng Regen Med 5(6):454–463

    CAS  Google Scholar 

  • Fujiwara K, Otsuka M, Enomoto H, Fen S (2001) Japanese Patent, No. 01-321164

  • Gao C, Wan Y, Lei X, Qu J, Yan T, Dai K (2011a) Polylysine coated bacterial cellulose nanofibers as novel templates for bone-like apatite deposition. Cellulose 18(6):1555–1561

    CAS  Google Scholar 

  • Gao C, Wan Y, Yang C, Dai K, Tang T, Luo H, Wang J (2011b) Preparation and characterization of bacterial cellulose sponge with hierarchical pore structure as tissue engineering scaffold. J Porous Mat 18(2):139–145

    CAS  Google Scholar 

  • Ge H, Du S, Lin D, Zhang J, Xiang J, Li Z (2011) Gluconacetobacter hansenii subsp. nov., a High-Yield Bacterial Cellulose Producing Strain Induced by High Hydrostatic Pressure. Appl Biochem Biotechnol 165(7–8):1519–1531

    CAS  Google Scholar 

  • George J (2012) High performance edible nanocomposite films containing bacterial cellulose nanocrystals. Carbohyd Polym 87(3):2031–2037

    CAS  Google Scholar 

  • George J, Ramana K, Bawa A (2011) Bacterial cellulose nanocrystals exhibiting high thermal stability and their polymer nanocomposites. Int J Biol Macromol 48(1):50–57

    CAS  Google Scholar 

  • Giménez J, Martinez M, de Pablo J, Rovira M, Duro L (2007) Arsenic sorption onto natural hematite, magnetite, and goethite. J Hazard Mater 141(3):575–580

    Google Scholar 

  • Gómez H, Ram MK, Alvi F, Villalba P, Stefanakos EL, Kumar A (2011) Graphene-conducting polymer nanocomposite as novel electrode for supercapacitors. J Power Sources 196(8):4102–4108

    Google Scholar 

  • Guo J, Catchmark JM (2012) Surface area and porosity of acid hydrolyzed cellulose nanowhiskers and cellulose produced by Gluconacetobacter xylinus. Carbohyd Polym 87(2):1026–1037

    CAS  Google Scholar 

  • Gusakov AV, Salanovich TN, Antonov AI, Ustinov BB, Okunev ON, Burlingame R, Emalfarb M, Baez M, Sinitsyn AP (2007) Design of highly efficient cellulase mixtures for enzymatic hydrolysis of cellulose. Biotechnol Bioeng 97(5):1028–1038

    CAS  Google Scholar 

  • Ha JH, Shah N, Ul-Islam M, Khan T, Park JK (2011) Bacterial cellulose production from a single sugar α-linked glucuronic acid-based oligosaccharide. Process Biochem 46(9):1717–1723

    CAS  Google Scholar 

  • Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110(6):3479–3500

    CAS  Google Scholar 

  • Hamilton D, Vorp D (2004) Encyclopedia of biomaterials and biomedical engineering. Taylor & Francis

  • Helenius G, Bäckdahl H, Bodin A, Nannmark U, Gatenholm P, Risberg B (2006) In vivo biocompatibility of bacterial cellulose. J Biomed Mater Res A 76(2):431–438

    Google Scholar 

  • Hestrin S, Schramm M (1954) Synthesis of cellulose by Acetobacter xylinum. 2. Preparation of freeze-dried cells capable of polymerizing glucose to cellulose. Biochem J 58(2):345

    CAS  Google Scholar 

  • Hirai A, Inui O, Horii F, Tsuji M (2009) Phase separation behavior in aqueous suspensions of bacterial cellulose nanocrystals prepared by sulfuric acid treatment. Langmuir 25(1):497–502

    CAS  Google Scholar 

  • Hoenich NA (2007) Cellulose for medical applications: past, present, and future. BioResources 1(2):270–280

    Google Scholar 

  • Hon DS (1994) Cellulose: a random walk along its historical path. Cellulose 1(1):1–25. doi:10.1007/BF00818796

    CAS  Google Scholar 

  • Hong F, Zhu Y, Yang G, Yang X (2011) Wheat straw acid hydrolysate as a potential cost-effective feedstock for production of bacterial cellulose. J Chem Technol Biot 86(5):675–680

    CAS  Google Scholar 

  • Hu Y, Catchmark JM (2011) Integration of cellulases into bacterial cellulose: toward bioabsorbable cellulose composites. J Biomed Mater Res B 97(1):114–123

    Google Scholar 

  • Hu W, Chen S, Zhou B, Wang H (2010) Facile synthesis of ZnO nanoparticles based on bacterial cellulose. Mater Sci Eng B 170(1):88–92

    CAS  Google Scholar 

  • Hu W, Chen S, Liu L, Ding B, Wang H (2011a) Formaldehyde sensors based on nanofibrous polyethyleneimine/bacterial cellulose membranes coated quartz crystal microbalance. Sens Actuators B Chem 157(2):554–559

    CAS  Google Scholar 

  • Hu W, Chen S, Yang Z, Liu L, Wang H (2011b) Flexible electrically conductive nanocomposite membrane based on bacterial cellulose and polyaniline. J Phys Chem B 115(26):8453–8457

    CAS  Google Scholar 

  • Hu W, Chen S, Zhou B, Liu L, Ding B, Wang H (2011c) Highly stable and sensitive humidity sensors based on quartz crystal microbalance coated with bacterial cellulose membrane. Sens Actuators B Chem 159(1):301–306

    CAS  Google Scholar 

  • Hu W, Liu S, Chen S, Wang H (2011d) Preparation and properties of photochromic bacterial cellulose nanofibrous membranes. Cellulose 18(3):655–661

    CAS  Google Scholar 

  • Hungund BS, Gupta S (2010a) Production of bacterial cellulose from Enterobacter amnigenus GH-1 isolated from rotten apple. World J Microbiol Biotechnol 26(10):1823–1828

    CAS  Google Scholar 

  • Hungund BS, Gupta S (2010b) Strain improvement of Gluconacetobacter xylinus NCIM 2526 for bacterial cellulose production. Afr J Biotechnol 9(32):5170–5172

    CAS  Google Scholar 

  • Iguchi M, Yamanaka S, Budhiono A (2000) Bacterial cellulose-a masterpiece of nature’s arts. J Mater Sci 35(2):261–270

    CAS  Google Scholar 

  • Ishihara M, Matsunaga M, Hayashi N, Tišler V (2002) Utilization of D-xylose as carbon source for production of bacterial cellulose. Enzyme Microb Technol 31(7):986–991

    Google Scholar 

  • Ishikawa A, Matsuoka M, Tsuchida T, Yoshinaga F (1995) Increase in cellulose production by sulfaguanidine-resistant mutants derived from Acetobacter xylinum subsp. sucrofermentans. Biosci Biotechnol Biochem 59(12):2259–2262

    CAS  Google Scholar 

  • Jang J-H, Castano O, Kim H-W (2009) Electrospun materials as potential platforms for bone tissue engineering. Adv Drug Deliver Rev 61(12):1065–1083

    CAS  Google Scholar 

  • Jockenhoevel S, Zund G, Hoerstrup SP, Chalabi K, Sachweh JS, Demircan L, Messmer BJ, Turina M (2001) Fibrin gel-advantages of a new scaffold in cardiovascular tissue engineering. Eur J Cardiothorac Surg 19(4):424–430

    CAS  Google Scholar 

  • Jonas R, Farah LF (1998) Production and application of microbial cellulose. Polym Degrad Stab 59(1):101–106

    CAS  Google Scholar 

  • Kadam SR, Patil SS, Bastawde KB, Khire JM, Gokhale DV (2006) Strain improvement of Lactobacillus delbrueckii NCIM 2365 for lactic acid production. Process Biochem 41(1):120–126

    CAS  Google Scholar 

  • Kalashnikova I, Bizot H, Cathala B, Capron I (2012) Modulation of cellulose nanocrystals amphiphilic properties to stabilize oil/water interface. Biomacromolecules 13(1):267–275

    CAS  Google Scholar 

  • Keshk S, Sameshima K (2005) Evaluation of different carbon sources for bacterial cellulose production. Afr J Biotechnol 4:478–482

    Google Scholar 

  • Khomenko V, Frackowiak E, Beguin F (2005) Determination of the specific capacitance of conducting polymer/nanotubes composite electrodes using different cell configurations. Electrochim Acta 50(12):2499–2506

    CAS  Google Scholar 

  • Kim C-W, Kim D-S, Kang S-Y, Marquez M, Joo YL (2006) Structural studies of electrospun cellulose nanofibers. Polymer 47(14):5097–5107

    CAS  Google Scholar 

  • Klemm D, Schumann D, Udhardt U, Marsch S (2001) Bacterial synthesized cellulose-artificial blood vessels for microsurgery. Prog Polym Sci 26(9):1561–1603

    CAS  Google Scholar 

  • Klemm D, Heublein B, Fink HP, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed 44(22):3358–3393

    CAS  Google Scholar 

  • Kongruang S (2008) Bacterial cellulose production by Acetobacter xylinum strains from agricultural waste products. Appl Biochem Biotechnol 148(1–3):245–256

    CAS  Google Scholar 

  • Kumagai A, Mizuno M, Kato N, Nozaki K, Togawa E, Yamanaka S, Okuda K, Saxena IM, Amano Y (2011) Ultrafine cellulose fibers produced by Asaia bogorensis, an acetic acid bacterium. Biomacromolecules 12(7):2815–2821. doi:10.1021/bm2005615

    CAS  Google Scholar 

  • Kurosumi A, Sasaki C, Yamashita Y, Nakamura Y (2009) Utilization of various fruit juices as carbon source for production of bacterial cellulose by Acetobacter xylinum NBRC 13693. Carbohyd Polym 76(2):333–335

    CAS  Google Scholar 

  • Lee H-J, Chung T-J, Kwon H-J, Kim H-J, Tze WTY (2012) Fabrication and evaluation of bacterial cellulose-polyaniline composites by interfacial polymerization. Cellulose 19(4):1251–1258

    CAS  Google Scholar 

  • Legnani C, Vilani C, Calil V, Barud H, Quirino W, Achete C, Ribeiro S, Cremona M (2008) Bacterial cellulose membrane as flexible substrate for organic light emitting devices. Thin Solid Films 517(3):1016–1020

    CAS  Google Scholar 

  • Liang Y, He P, Ma Y, Zhou Y, Pei C, Li X (2009) A novel bacterial cellulose-based carbon paste electrode and its polyoxometalate-modified properties. Electrochem Commun 11(5):1018–1021

    CAS  Google Scholar 

  • Liang H, Guan Q, Zhu Z, Song L, Yao H, Lei X, Yu S (2012) Highly conductive and stretchable conductors fabricated from bacterial cellulose. NPG Asia Mater 4(6):e19

    Google Scholar 

  • Liao S, Guan K, Cui F, Shi S, Sun T (2003) Lumbar spinal fusion with a mineralized collagen matrix and rhBMP-2 in a rabbit model. Spine (Phila Pa 1976) 28(17):1954–1960

    CAS  Google Scholar 

  • Lin Y-K, Chen K-H, Ou K-L, Liu M (2011) Effects of different extracellular matrices and growth factor immobilization on biodegradability and biocompatibility of macroporous bacterial cellulose. J Bioact Compat Polym 26(5):508–518

    CAS  Google Scholar 

  • Linhardt RJ, Murugesan S, Xie J (2008) Immobilization of heparin: approaches and applications. Curr Top Med Chem 8(2):80–100

    Google Scholar 

  • Liu W, Jawerth L, Sparks E, Falvo M, Hantgan R, Superfine R, Lord S, Guthold M (2006) Fibrin fibers have extraordinary extensibility and elasticity. Science 313(5787):634

    CAS  Google Scholar 

  • Liu G, He F, Li X, Wang S, Li L, Zuo G, Huang Y, Wan Y (2011) Three-dimensional cuprous oxide microtube lattices with high catalytic activity templated by bacterial cellulose nanofibers. J Mater Chem 21(29):10637–10640

    CAS  Google Scholar 

  • Lynd LR, Weimer PJ, Van Zyl WH, Pretorius IS (2002) Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev 66(3):506–577

    CAS  Google Scholar 

  • Marins JA, Soares BG, Dahmouche K, Ribeiro SJ, Barud H, Bonemer D (2011) Structure and properties of conducting bacterial cellulose-polyaniline nanocomposites. Cellulose 18(5):1285–1294

    CAS  Google Scholar 

  • Martínez H, Brackmann C, Enejder A, Gatenholm P (2012) Mechanical stimulation of fibroblasts in micro-channeled bacterial cellulose scaffolds enhances production of oriented collagen fibers. J Biomed Mater Res A 100(4):948–957

    Google Scholar 

  • Martínez-Sanz M, Lopez-Rubio A, Lagaron JM (2011a) Optimization of the nanofabrication by acid hydrolysis of bacterial cellulose nanowhiskers. Carbohyd Polym 85(1):228–236

    Google Scholar 

  • Martínez-Sanz M, Olsson RT, Lopez-Rubio A, Lagaron JM (2011b) Development of electrospun EVOH fibres reinforced with bacterial cellulose nanowhiskers. Part I: characterization and method optimization. Cellulose 18(2):335–347

    Google Scholar 

  • Martínez-Sanz M, Olsson RT, Lopez-Rubio A, Lagaron JM (2012) Development of bacterial cellulose nanowhiskers reinforced EVOH composites by electrospinning. J Appl Polym Sci 124(2):1398–1408

    Google Scholar 

  • Masaoka S, Ohe T, Sakota N (1993) Production of cellulose from glucose by Acetobacter xylinum. J Ferment Bioeng 75(1):18–22

    Google Scholar 

  • Matsuoka M, Tsuchida T, Matsushita K, Adachi O, Yoshinaga F (1996) A synthetic medium for bacterial cellulose production by Acetobacter xylinum subsp. sucrofermentans. Biosci Biotechnol Biochem 60:575–579

  • Mikami I, Sakamoto Y, Yoshinaga Y, Okuhara T (2003) Kinetic and adsorption studies on the hydrogenation of nitrate and nitrite in water using Pd-Cu on active carbon support. Appl Catal B 44(1):79–86

    CAS  Google Scholar 

  • Mikkelsen D, Flanagan BM, Dykes GA, Gidley MJ (2009) Influence of different carbon sources on bacterial cellulose production by Gluconacetobacter xylinus strain ATCC 53524. J Appl Microbiol 107(2):576–583. doi:10.1111/j.1365-2672.2009.04226.x

    CAS  Google Scholar 

  • Mladenova EK, Dakova IG, Karadjova IB (2011) Chitosan membranes as sorbents for trace elements determination in surface waters. Environ Sci Pollut Res 18(9):1633–1643

    CAS  Google Scholar 

  • Mohd Amin MCI, Ahmad N, Halib N, Ahmad I (2012) Synthesis and characterization of thermo-and pH-responsive bacterial cellulose/acrylic acid hydrogels for drug delivery. Carbohyd Polym 88(2):465–473

    CAS  Google Scholar 

  • Mormino R, Bungay H (2003) Composites of bacterial cellulose and paper made with a rotating disk bioreactor. Appl Microbiol Biotechnol 62(5–6):503–506

    CAS  Google Scholar 

  • Müller D, Rambo CR, Recouvreux DOS, Porto LM, Barra GMO (2011) Chemical in situ polymerization of polypyrrole on bacterial cellulose nanofibers. Synth Met 161(1–2):106–111

    Google Scholar 

  • Müller D, Mandelli JS, Marins JA, Soares BG, Porto LM, Rambo CR, Barra GMO (2012) Electrically conducting nanocomposites: preparation and properties of polyaniline (PAni)-coated bacterial cellulose nanofibers (BC). Cellulose 19(5):1645–1654

    Google Scholar 

  • Nakayama A, Kakugo A, Gong JP, Osada Y, Takai M, Erata T, Kawano S (2004) High mechanical strength double-network hydrogel with bacterial cellulose. Adv Funct Mater 14(11):1124–1128

    CAS  Google Scholar 

  • Nata IF, Lee CK (2010) Novel carbonaceous nanocomposite pellicle based on bacterial cellulose. Green Chem 12(8):1454–1459

    CAS  Google Scholar 

  • Nata IF, Sureshkumar M, Lee C-K (2011) One-pot preparation of amine-rich magnetite/bacterial cellulose nanocomposite and its application for arsenate removal. RSC Adv 1(4):625–631

    CAS  Google Scholar 

  • Nishiyama Y, Langan P, Chanzy H (2002) Crystal structure and hydrogen-bonding system in cellulose Iβ from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 124(31):9074–9082

    CAS  Google Scholar 

  • Oliveira G, Carvalho L, Silva M (2003) Properties of carbodiimide treated heparin. Biomaterials 24(26):4777–4783

    CAS  Google Scholar 

  • Olsson RT, Kraemer R, Lopez-Rubio A, Torres-Giner S, Ocio MaJ, Lagarón JMa (2010a) Extraction of microfibrils from bacterial cellulose networks for electrospinning of anisotropic biohybrid fiber yarns. Macromolecules 43(9):4201–4209

    CAS  Google Scholar 

  • Olsson RT, Samir MA, Salazar-Alvarez G, Belova L, Ström V, Berglund LA, Ikkala O, Nogues J, Gedde UW (2010b) Making flexible magnetic aerogels and stiff magnetic nanopaper using cellulose nanofibrils as templates. Nat Nanotechnol 5(8):584–588

    CAS  Google Scholar 

  • Oshima T, Kondo K, Ohto K, Inoue K, Baba Y (2008) Preparation of phosphorylated bacterial cellulose as an adsorbent for metal ions. React Funct Polym 68(1):376–383

    CAS  Google Scholar 

  • Oshima T, Taguchi S, Ohe K, Baba Y (2011) Phosphorylated bacterial cellulose for adsorption of proteins. Carbohyd Polym 83(2):953–958

    CAS  Google Scholar 

  • Padera RF, Schoen FJ (2004) Cardiovascular medical devices. In: Ratner BD, Hoffman AS, Schoen FJ, Lemons JE (eds). Biomaterials science. Elsevier Academic Press, San Diego, CA, p 470–494

  • Peng S, Zheng Y, Wu J, Wu Y, Ma Y, Song W, Xi T (2012) Preparation and characterization of degradable oxidized bacterial cellulose reacted with nitrogen dioxide. Polym Bull 68(2):415–423

    CAS  Google Scholar 

  • Perepelkin K, Belonogova M, Smirnova N (1997) Determination of shrinkage of textiles made of chemical and flax fibres by different methods. Fibre Chem 29(3):200–205

    CAS  Google Scholar 

  • Pértile RAN, Moreira S, Gil da Costa RM, Correia A, Guãrdao L, Gartner F, Vilanova M, Gama M (2012) Bacterial cellulose: long-term biocompatibility studies. J Biomater Sci Polym Ed 23(10):1339–1354

    Google Scholar 

  • Petersen N, Gatenholm P (2011) Bacterial cellulose-based materials and medical devices: current state and perspectives. Appl Microbiol Biotechnol 91(5):1277–1286

    CAS  Google Scholar 

  • Putra A, Kakugo A, Furukawa H, Gong JP, Osada Y (2008) Tubular bacterial cellulose gel with oriented fibrils on the curved surface. Polymer 49(7):1885–1891

    CAS  Google Scholar 

  • Rambo CR, Recouvreux DOS, Carminatti CA, Pitlovanciv AK, Antônio RV, Porto LM (2008) Template assisted synthesis of porous nanofibrous cellulose membranes for tissue engineering. Mater Sci Eng, C 28(4):549–554

    CAS  Google Scholar 

  • Rånby B (1949) Aqueous colloidal solutions of cellulose micelles. Acta Chem Scand 3(5):649–650

    Google Scholar 

  • Rani MU, Appaiah A (2011) Optimization of culture conditions for bacterial cellulose production from Gluconacetobacter hansenii UAC09. Ann Microbiol 61(4):781–787

    CAS  Google Scholar 

  • Rani MU, Udayasankar K, Appaiah K (2011) Properties of bacterial cellulose produced in grape medium by native isolate Gluconacetobacter sp. J Appl Polym Sci 120(5):2835–2841

    CAS  Google Scholar 

  • Recouvreux DOS, Rambo CR, Berti FV, Carminatti CA, Antônio RV, Porto LM (2011) Novel three-dimensional cocoon-like hydrogels for soft tissue regeneration. Mater Sci Eng, C 31(2):151–157

    CAS  Google Scholar 

  • Retegi A, Gabilondo N, Peña C, Zuluaga R, Castro C, Ganan P, de La Caba K, Mondragon I (2010) Bacterial cellulose films with controlled microstructure-mechanical property relationships. Cellulose 17(3):661–669

    CAS  Google Scholar 

  • Revol JF, Godbout DL, Gray DG (1997) Solidified liquid crystals of cellulose with optically variable properties. United States Patent, No 5629055

    Google Scholar 

  • Revol JF, Godbout DL, Gray DG (1998) Solid self-assembled films of cellulose with chiral nematic order and optically variable properties. J Pulp Pap Sci 24(5):146–149

    CAS  Google Scholar 

  • Roman M, Winter WT (2004) Effect of sulfate groups from sulfuric acid hydrolysis on the thermal degradation behavior of bacterial cellulose. Biomacromolecules 5(5):1671–1677

    CAS  Google Scholar 

  • Rosamond W, Flegal K, Furie K, Go A, Greenlund K, Haase N, Hailpern S, Ho M, Howard V, Kissela B (2008) American heart association statistics committee and stroke statistics subcommittee. Heart disease and stroke statistics-2008 update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation 117(4):e25–e146

    Google Scholar 

  • Ross P, Mayer R, Benziman M (1991) Cellulose biosynthesis and function in bacteria. Microbiol Rev 55(1):35–58

    CAS  Google Scholar 

  • Saikia CN, Goswami T, Ali F (1997) Evaluation of pulp and paper making characteristics of certain fast growing plants. Wood SciTechnol 31(6):467–475. doi:10.1007/BF00702569

    CAS  Google Scholar 

  • Sani A, Dahman Y (2010) Improvements in the production of bacterial synthesized biocellulose nanofibres using different culture methods. J Chem Technol Biot 85(2):151–164

    CAS  Google Scholar 

  • Shadwick RE (1999) Mechanical design in arteries. J Exp Biol 202(23):3305–3313

    CAS  Google Scholar 

  • Shaikh FM, Callanan A, Kavanagh EG, Burke PE, Grace PA, McGloughlin TM (2008) Fibrin: a natural biodegradable scaffold in vascular tissue engineering. Cells Tissues Organs 188(4):333–346

    CAS  Google Scholar 

  • Shen W, Chen S, Shi S, Li X, Zhang X, Hu W, Wang H (2009) Adsorption of Cu (II) and Pb(II) onto diethylenetriamine-bacterial cellulose. Carbohyd Polym 75(1):110–114

    CAS  Google Scholar 

  • Shoda M, Sugano Y (2005) Recent advances in bacterial cellulose production. Biotechnol Bioprocess Eng 10(1):1–8

    CAS  Google Scholar 

  • Somerville C (2006) Cellulose synthesis in higher plants. Annu Rev Cell Dev Biol 22:53–78

    CAS  Google Scholar 

  • Song H-J, Li H, Seo J-H, Kim M-J, Kim S-J (2009) Pilot-scale production of bacterial cellulose by a spherical type bubble column bioreactor using saccharified food wastes. Korean J Chem Eng 26(1):141–146

    Google Scholar 

  • Soykeabkaew N, Laosat N, Ngaokla A, Yodsuwan N, Tunkasiri T (2012) Reinforcing potential of micro-and nano-sized fibers in the starch-based biocomposites. Compos Sci Technol 72(7):845–852

    CAS  Google Scholar 

  • Sugiyama J, Harada H, Fujiyoshi Y, Uyeda N (1985) Lattice images from ultrathin sections of cellulose microfibrils in the cell wall of Valonia macrophysa Kütz. Planta 166(2):161–168

    CAS  Google Scholar 

  • Sun D, Zhou L, Wu Q, Yang S (2007) Preliminary research on structure and properties of nano-cellulose. J Wuhan Univ Technol Mater Sci Ed 22(4):677–680

    CAS  Google Scholar 

  • Sun D, Ma B, Zhu C, Liu C, Yang J (2010a) Novel nitrocellulose made from bacterial cellulose. J Energ Mater 28(2):85–97

    CAS  Google Scholar 

  • Sun D, Yang J, Li J, Yu J, Xu X, Yang X (2010b) Novel Pd-Cu/bacterial cellulose nanofibers: preparation and excellent performance in catalytic denitrification. Appl Surf Sci 256(7):2241–2244

    CAS  Google Scholar 

  • Sun D, Yang J, Wang X (2010c) Bacterial cellulose/TiO2 hybrid nanofibers prepared by the surface hydrolysis method with molecular precision. Nanoscale 2(2):287–292

    CAS  Google Scholar 

  • Sun D, Yu J, Liu X, Liu C (2011) Biosynthesis of carboxy methylated bacterial cellulose composite for wound dressing. Mater Sci Forum, 2011. Trans Tech Publ, pp 322–326

  • Surma-Ślusarska B, Danielewicz D, Presler S (2008a) Properties of composites of unbeaten birch and pine sulphate pulps with bacterial cellulose. Fibres Text East Eur 16:127–129

    Google Scholar 

  • Surma-Ślusarska B, Presler S, Danielewicz D (2008b) Characteristics of bacterial cellulose obtained from Acetobacter xylinum culture for application in papermaking. Fibres Text East Eur 16(4):69

    Google Scholar 

  • Sutherland IW (2001) Microbial polysaccharides from Gram-negative bacteria. Int Dairy J 11(9):663–674

    CAS  Google Scholar 

  • Tashiro K, Kobayashi M (1991) Theoretical evaluation of three-dimensional elastic constants of native and regenerated celluloses: role of hydrogen bonds. Polymer 32(8):1516–1526

    CAS  Google Scholar 

  • Timko M, Koneracká M, Kopčanský P, Ramchand C, Vékas L, Bica D (2004) Application of magnetizable complex systems in biomedicine. Czech J Phys 54(4):599–606

    Google Scholar 

  • Ul-Islam M, Khan T, Park JK (2012) Water holding and release properties of bacterial cellulose obtained by in situ and ex situ modification. Carbohyd Polym 88(2):596–603

    CAS  Google Scholar 

  • Vitta S, Thiruvengadam V (2012) Multifunctional bacterial cellulose and nanoparticle-embedded composites. Curr Sci (Bangalore) 102(10):1398–1405

    CAS  Google Scholar 

  • Vitta S, Drillon M, Derory A (2010) Magnetically responsive bacterial cellulose: synthesis and magnetic studies. J Appl Phys 108(5):053905–053907

    Google Scholar 

  • Vyjayanthi J, Suresh S (2010) Decolorization of drimarene red dye using palladized bacterial cellulose in a reactor. Water Environ Res 82(7):601–609

    CAS  Google Scholar 

  • Wan Y, Gao C, Han M, Liang H, Ren K, Wang Y, Luo H (2011a) Preparation and characterization of bacterial cellulose/heparin hybrid nanofiber for potential vascular tissue engineering scaffolds. Polym Adv Technol 22(12):2643–2648

    CAS  Google Scholar 

  • Wan Y, Zuo G, Yu F, Huang Y, Ren K, Luo H (2011b) Preparation and mineralization of three-dimensional carbon nanofibers from bacterial cellulose as potential scaffolds for bone tissue engineering. Surf Coat Technol 205(8):2938–2946

    CAS  Google Scholar 

  • Wang J, Yu X (2010) Preparation, characterization and in vitro analysis of novel structured nanofibrous scaffolds for bone tissue engineering. Acta Biomater 6(8):3004–3012

    CAS  Google Scholar 

  • Wang Y, Luo Q, Peng B, Pei C (2008) A novel thermotropic liquid crystalline–Benzoylated bacterial cellulose. Carbohyd Polym 74(4):875–879

    CAS  Google Scholar 

  • Wang J, Valmikinathan CM, Liu W, Laurencin CT, Yu X (2010) Spiral-structured, nanofibrous, 3D scaffolds for bone tissue engineering. J Biomed Mater Res A 93(2):753–762

    Google Scholar 

  • Wang J, Wan Y, Han J, Lei X, Yan T, Gao C (2011a) Nanocomposite prepared by immobilising gelatin and hydroxyapatite on bacterial cellulose nanofibres. Micro Nano Lett, IET 6(3):133–136

    Google Scholar 

  • Wang J, Zhu Y, Du J (2011b) Bacterial cellulose: a natural nanomaterial for biomedical applications. J Mech Med Biol 11(02):285–306

    Google Scholar 

  • Wang H, Zhu E, Yang J, Zhou P, Sun D, Tang W (2012) Bacterial cellulose nanofiber-supported polyaniline nanocomposites with flake-shaped morphology as supercapacitor electrodes. J Phys Chem C 116(24):13013–13019

    CAS  Google Scholar 

  • Wanichapichart P, Taweepreeda W, Nawae S, Choomgan P, Yasenchak D (2012) Chain scission and anti fungal effect of electron beam on cellulose membrane. Radiat Phys Chem 81(8):949–953

    CAS  Google Scholar 

  • Webster TJ, Ahn ES (2007) Nanostructured biomaterials for tissue engineering bone. Tissue Engineering II. Springer, News York, pp 275–308

    Google Scholar 

  • Wei B, Yang G, Hong F (2011) Preparation and evaluation of a kind of bacterial cellulose dry films with antibacterial properties. Carbohyd Polym 84(1):533–538

    CAS  Google Scholar 

  • White D, Brown Jr R, Schuerch C (1989) Cellulose and wood chemistry and technology. In: Proceedings of the tenth cellulose conference

  • Williams DF (1987) Definitions in biomaterials: proceedings of a consensus conference of the European Society for Biomaterials, Chester, England, March 3–5, 1986, vol 4. Elsevier Science Ltd, Amsterdam

    Google Scholar 

  • Wu Q, Henriksson M, Liu X, Berglund LA (2007) A high strength nanocomposite based on microcrystalline cellulose and polyurethane. Biomacromolecules 8(12):3687–3692

    CAS  Google Scholar 

  • Wu R-Q, Li Z-X, Yang J-P, Xing X-H, Shao D-Y, Xing K-L (2010) Mutagenesis induced by high hydrostatic pressure treatment: a useful method to improve the bacterial cellulose yield of a Gluconoacetobacter xylinus strain. Cellulose 17(2):399–405

    CAS  Google Scholar 

  • Wu S, Li M, Fang B, Tong H (2012) Reinforcement of vulnerable historic silk fabrics with bacterial cellulose film and its light aging behavior. Carbohyd Polym 88(2):496–501

    CAS  Google Scholar 

  • Yang YK, Park SH, Hwang JW, Pyun YR, Kim YS (1998) Cellulose production by Acetobacter xylinum BRC5 under agitated condition.J Ferment Bioeng 85(3):312–317

    Google Scholar 

  • Yang J, Sun D, Li J, Yang X, Yu J, Hao Q, Liu W, Liu J, Zou Z, Gu J (2009) In situ deposition of platinum nanoparticles on bacterial cellulose membranes and evaluation of PEM fuel cell performance. Electrochim Acta 54(26):6300–6305

    CAS  Google Scholar 

  • Yang J, Yu J, Fan J, Sun D, Tang W, Yang X (2011a) Biotemplated preparation of CdS nanoparticles/bacterial cellulose hybrid nanofibers for photocatalysis application. J Hazard Mater 189(1):377–383

    CAS  Google Scholar 

  • Yang J, Yu J, Sun D, Yang X (2011b) Preparation of novel Ag/bacterial cellulose hybrid nanofibers for antimicrobial wound dressing. Adv Mater Res 152:1771–1774

    Google Scholar 

  • Yin N, Chen S, Ouyang Y, Tang L, Yang J, Wang H (2011a) Biomimetic mineralization synthesis of hydroxyapatite bacterial cellulose nanocomposites. Prog Nat Sci Mater Int 21(6):472–477

    Google Scholar 

  • Yin X, Yu C, Zhang X, Yang J, Lin Q, Wang J, Zhu Q (2011b) Comparison of succinylation methods for bacterial cellulose and adsorption capacities of bacterial cellulose derivatives for Cu2+ ion. Polym Bull 67(3):401–412

    CAS  Google Scholar 

  • Yun YS, Cho SY, Jin H-J (2010) Flow-induced liquid crystalline solutions prepared from aspect ratio-controlled bacterial cellulose nanowhiskers. Mol Cryst Liq Cryst 519(1):141–148

    CAS  Google Scholar 

  • Zaar K (1979) Visualization of pores (export sites) correlated with cellulose production in the envelope of the gram-negative bacterium Acetobacter xylinum. J Cell Biol 80(3):773–777

    CAS  Google Scholar 

  • Zhang W, Chen S, Hu W, Zhou B, Yang Z, Yin N, Wang H (2011a) Facile fabrication of flexible magnetic nanohybrid membrane with amphiphobic surface based on bacterial cellulose. Carbohyd Polym 86(4):1760–1767

    CAS  Google Scholar 

  • Zhang X, Chen W, Lin Z, Shen J (2011b) Photocatalytic degradation of a methyl orange wastewater solution using titanium dioxide loaded on bacterial cellulose. Synth React Inorg Met-Org Nano-Met Chem 41(9):1141–1147

    CAS  Google Scholar 

  • Zhang X, Chen W, Lin Z, Yao J, Tan S (2011c) Preparation and photocatalysis properties of bacterial cellulose/TiO2 composite membrane doped with rare earth elements. Synth React Inorg Met-Org Nano-Met Chem 41(8):997–1004

    CAS  Google Scholar 

  • Zhu H, Jia S, Wan T, Jia Y, Yang H, Li J, Yan L, Zhong C (2011) Biosynthesis of spherical Fe3O4/bacterial cellulose nanocomposites as adsorbents for heavy metal ions. Carbohyd Polym 86(4):1558–1564

    CAS  Google Scholar 

  • Zimmermann T, Pöhler E, Geiger T (2004) Cellulose fibrils for polymer reinforcement. Adv Eng Mater 6(9):754–761

    Google Scholar 

  • Zimmermann KA, LeBlanc JM, Sheets KT, Fox RW, Gatenholm P (2011) Biomimetic design of a bacterial cellulose/hydroxyapatite nanocomposite for bone healing applications. Mater Sci Eng, C 31(1):43–49

    CAS  Google Scholar 

  • Zogaj X, Bokranz W, Nimtz M, Römling U (2003) Production of cellulose and curli fimbriae by members of the family Enterobacteriaceae isolated from the human gastrointestinal tract. Infect Immun 71(7):4151–4158

    CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge the financial support from State 863 Projects (2011AA050701), the Fundamental Research Funds for the Central Universities (No. 30920130121001), and a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD, China).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongping Sun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, Y., Zhu, C., Yang, J. et al. Recent advances in bacterial cellulose. Cellulose 21, 1–30 (2014). https://doi.org/10.1007/s10570-013-0088-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-013-0088-z

Keywords

Navigation