Skip to main content
Log in

Cellulose reinforced polymer composites and nanocomposites: a critical review

  • Review Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

This review provides a critical assessment of the use of cellulosic materials for reinforcement in polymer composites. The review focuses on structure–property interrelationships and the compatibilization of cellulosic materials for optimal performance of the resulting composite materials. Optimal material and physical properties are characterized on the basis of the reinforcement’s physical dimension and the nature of the interface between reinforcement and matrix. We explore how very different cellulosic materials—bacterial, microcrystalline, microfibrillated or nanocrystalline—can cause distinctly different reinforcment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

Notes

  1. Cell here refers to a physical unit comprising a single fibre-matrix and their interactions.

  2. Fluence is defined as the number of particles that intersect a unit area. The term is used in particular to describe the strength of a radiation field.

  3. A conventional method to examine pulp fibre strength is to measure the zero-span strength of paper sheets. In order to compare the strength of individual MFC microfibrils with pulp fibres, the zero-span strength, or some similar concept, of MFC sheets and paper sheets is needed.

  4. Stained with calcofluor dye for observation using a confocal laser scanning microscope.

  5. The chemistry of CNC modification bears similarities to the methods used on macroscale cellulosic materials, which is reviewed in the previous section.

References

  • Abitbol T, Kloser E, Gray DG (2013) Estimation of the surface sulfur content of cellulose nanocrystals prepared by sulfuric acid hydrolysis. Cellulose 20(2):785–794

    Article  CAS  Google Scholar 

  • Adusumalli R-B, Reifferscheid M, Weber H, Roeder T, Sixta H, Gindl W (2006) Mechanical properties of regenerated cellulose fibres for composites. Macromol Symp 244(1):119–125

    Article  CAS  Google Scholar 

  • Alam MK, Khan MA, Lehmann EH, Vontobel P (2007) Study of the water uptake and internal defects of jute-reinforced polymer composites with a digital neutron radiography technique. J Appl Polym Sci 105(4):1958–1963

    Article  CAS  Google Scholar 

  • Alexander RJ (1992) Carbohydrates used as fat replacers. In: Alexander RJ, Zobel HE (eds) Developments in carbohydrate chemistry. Am. Assoc. Cereal Chem, St. Paul, MN, pp 343–370

    Google Scholar 

  • Andresen M, Stenius P (2007) Water-in-oil emulsions stabilized by hydrophobized microfibrillated cellulose. J Dispersion Sci Technol 28(6):837–844

    Article  CAS  Google Scholar 

  • Angelini LG, Lazzeri A, Levita G, Fontanelli D, Bozzi C (2000) Ramie (Boehmeria nivea (L.) Gaud.) and Spanish Broom (Spartium junceum L.) fibres for composite materials: agronomical aspects, morphology and mechanical properties. Ind Crops Prod 11(2–3):145–161

    Article  Google Scholar 

  • Angles MN, Dufresne A (2000) Plasticized starch/tunicin whiskers nanocomposites. 1. Structural analysis. Macromolecules 33(22):8344–8353

    Article  CAS  Google Scholar 

  • Angles MN, Dufresne A (2001) Plasticized starch/tunicin whiskers nanocomposite materials. 2. Mechanical behavior. Macromolecules 34(9):2921–2931

    Article  CAS  Google Scholar 

  • Angles MN, Vignon MR, Dufresne A (2000a) Plasticized starch and cellulose whiskers composites. Mater Tech 88(7–8):59–61

    CAS  Google Scholar 

  • Angles MN, Vignon MR, Dufresne A (2000b) Plasticized starch and cellulose whiskers composites. Mater Tech (Paris) 88(7–8):59–61

    CAS  Google Scholar 

  • Araki J, Wada M, Kuga S, Okano T (1998) Flow properties of microcrystalline cellulose suspension prepared by acid treatment of native cellulose. Colloids Surf A 142(1):75–82

    Article  CAS  Google Scholar 

  • Araki J, Wada M, Kuga S, Okano T (1999) Influence of surface charge on viscosity behavior of cellulose microcrystal suspension. J Wood Sci 45(3):258–261

    Article  CAS  Google Scholar 

  • Araki J, Wada M, Kuga S (2001) Steric stabilization of a cellulose microcrystal suspension by poly(ethylene glycol) grafting. Langmuir 17(1):21–27

    Article  CAS  Google Scholar 

  • Ardizzone S, Dioguardi FS, Mussini T, Mussini PR, Rondinini S, Vercelli B, Vertova A (1999) Microcrystalline cellulose powders: structure, surface features and water sorption capbility. Cellulose 6:57

    Article  CAS  Google Scholar 

  • Augier L, Sperone G, Vaca-Garcia C, Borredon ME (2007) Influence of the wood fibre filler on the internal recycling of poly (vinyl chloride)-based composites. Polym Degrad Stab 92(7):1169–1176

    Article  CAS  Google Scholar 

  • Bailie C (2005) Green composites: polymer composites and the environment. CRC Press, Boca Raton, FL

    Book  Google Scholar 

  • Bataille P, Dufourd M, Sapieha S (1994) Copolymerization of styrene onto cellulose activated by corona. Polym Int 34(4):387–391

    Article  CAS  Google Scholar 

  • Battista OA, Smith PA (1962) Microcrystalline cellulose. J Ind Eng Chem 54(9):20

    Article  CAS  Google Scholar 

  • Battista OA, Coppick S, Howsmon JA, Morehead FF, Sisson WA (1956) Level-off degree of polymerization. Relation to polyphase structure of cellulose fibers. J Ind Eng Chem 48:333

    Article  CAS  Google Scholar 

  • Beecroft LL, Ober CK (1997) Nanocomposite materials for optical applications. Chem Mater 9(6):1302–1317

    Article  CAS  Google Scholar 

  • Beg MDH, Pickering KL, Weal SJ (2005) Corn gluten meal as a biodegradable matrix material in wood fibre reinforced composites. Mater Sci Eng, A 412(1–2):7–11

    Google Scholar 

  • Belgacem MN, Gandini A (2005a) Surface modification of cellulose fibres. Polim Cienc Tecnol 15(2):114–121

    Article  CAS  Google Scholar 

  • Belgacem MN, Gandini A (2005b) The surface modification of cellulose fibres for use as reinforcing elements in composite materials. Compos Interfaces 12(1–2):41–75

    Article  CAS  Google Scholar 

  • Benerito RR, Ward TL, Soignet DM, Hinojosa O (1981) Modifications of cotton cellulose surfaces by use of radiofrequency cold plasmas and characterization of surface changes by ESCA. Text Res J 51(4):224–232

    Article  CAS  Google Scholar 

  • Bhatnagar A, Sain M (2005) Processing of cellulose nanofiber-reinforced composites. J Reinf Plast Compos 24(12):1259–1268

    Article  CAS  Google Scholar 

  • Bisanda ETN, Ansell MP (1992) Properties of sisal-CNSL composites. J Mater Sci 27(6):1690–1700

    Article  CAS  Google Scholar 

  • Bledzki AK, Faruk O (2006a) Influence of processing temperature on microcellular injection-moulded wood-polypropylene composites. Macromol Mater Eng 291(10):1226–1232

    Article  CAS  Google Scholar 

  • Bledzki AK, Faruk O (2006b) Microcellular wood fibre reinforced PP composites: a comparative study between extrusion, injection moulding and compression moulding. Int Polym Process 21(3):256–262

    CAS  Google Scholar 

  • Bledzki AK, Gassan J (1999) Composites reinforced with cellulose based fibres. Prog Polym Sci 24(2):221–274

    Article  CAS  Google Scholar 

  • Bledzki AK, Reihmane S, Gassan J (1996) Properties and modification methods for vegetable fibers for natural fiber composites. J Appl Polym Sci 59(8):1329–1336

    Article  CAS  Google Scholar 

  • Bledzki AK, Faruk O, Sperber VE (2006) Cars from bio-fibers. Macromol Mater Eng 291(5):449–457

    Article  CAS  Google Scholar 

  • Boissard CIR, Bourban P-E, Plummer CJG, Neagu RC, Månson J-AE (2012) Cellular biocomposites from polylactide and microfibrillated cellulose. J Cell Plast 48(5):445–458

    Google Scholar 

  • Boldizar A, Klason C, Kubat J, Naeslund P, Saha P (1987) Prehydrolyzed cellulose as reinforcing filler for thermoplastics. Int J Polym Mater 11(4):229–262

    Article  CAS  Google Scholar 

  • Bondeson D, Oksman K (2007a) Dispersion and characteristics of surfactant modified cellulose whiskers nanocomposites. Compos Interfaces 14(7–9):617–630

    Article  CAS  Google Scholar 

  • Bondeson D, Oksman K (2007b) Polylactic acid/cellulose whisker nanocomposites modified by polyvinyl alcohol. Compos A 38(12):2486–2492

    Article  CAS  Google Scholar 

  • Bonini C, Heux L, Cavaille J-Y (2000) Polypropylene reinforced with cellulose whiskers. Mater Tech 88(7–8):55–58

    CAS  Google Scholar 

  • Bonini C, Heux L, Cavaille J-Y, Lindner P, Dewhurst C, Terech P (2002) Rodlike cellulose whiskers coated with surfactant: a small-angle neutron scattering characterization. Langmuir 18(8):3311–3314

    Article  CAS  Google Scholar 

  • Borges JP, Godinho MH, Martins AF, Stamatialis DF, De Pinho MN, Belgacem MN (2004) Tensile properties of cellulose fiber reinforced hydroxypropylcellulose films. Polym Compos 25(1):102–110

    Article  CAS  Google Scholar 

  • Bos HL, Van den Oever MJA (1999) The large influence of flax fiber structure on composite strength. Paper presented at the international conference on woodfiber-plastic composites, 5th, Madison, WI, United States, May 26–27, 1999

  • Bos HL, Molenveld K, Teunissen W, van Wingerde AM, van Delft DRV (2004) Compressive behaviour of unidirectional flax fibre reinforced composites. J Mater Sci 39(6):2159–2168

    Article  CAS  Google Scholar 

  • Botaro VR, dos Santos CG, Arantes Junior G, da Costa AR (2001) Chemical modification of lignocellulosic materials by irradiation with Nd-YAG pulsed laser. Appl Surf Sci 183(1–2):120–125

    Article  CAS  Google Scholar 

  • Boufi S, Gandini A (2001) Formation of polymeric films on cellulosic surfaces by admicellar polymerization. Cellulose 8(4):303–312

    Article  CAS  Google Scholar 

  • Buliga GS, Tuason DC Jr, Venables AC (1998) Microcrystalline cellulose-containing texture and stabilizer composition for food. WO Patent 9833394

  • Capadona JR, Van Den Berg O, Capadona LA, Schroeter M, Rowan SJ, Tyler DJ, Weder C (2007) A versatile approach for the processing of polymer nanocomposites with self-assembled nanofibre templates. Nat Nanotechnol 2(12):765–769

    Article  CAS  Google Scholar 

  • Capadona JR, Shanmuganathan K, Tyler DJ, Rowan SJ, Weder C (2008) Stimuli-responsive polymer nanocomposites inspired by the sea cucumber dermis. Science 319(5868):1370

    Article  CAS  Google Scholar 

  • Carlsson CMG, Ström G (1991) Reduction and oxidation of cellulose surfaces by means of cold plasma. Langmuir 7(11):2492–2497

    Article  CAS  Google Scholar 

  • Castellano M, Gandini A, Fabbri P, Belgacem MN (2004) Modification of cellulose fibers with organosilanes: under what conditions does coupling occur? J Colloid Interface Sci 273(2):505–511

    Article  CAS  Google Scholar 

  • Chakraborty A, Sain M, Kortschot M (2005) Cellulose microfibrils: a novel method of preparation using high shear refining and cryocrushing. Holzforschung 59:102–107

    Article  CAS  Google Scholar 

  • Chakraborty A, Sain M, Kortschot M (2006) Reinforcing potential of wood pulp-derived microfibres in a PVA matrix. Holzforschung 60(1):53–58

    Article  CAS  Google Scholar 

  • Chauve G, Heux L, Arouini R, Mazeau K (2005) Cellulose poly(ethylene-co-vinyl acetate) nanocomposites studied by molecular modeling and mechanical spectroscopy. Biomacromolecules 6(4):2025–2031

    Article  CAS  Google Scholar 

  • Chazeau L, Cavaille JY, Canova G, Dendievel R, Boutherin B (1999) Viscoelastic properties of plasticized PVC reinforced with cellulose whiskers. J Appl Polym Sci 71(11):1797–1808

    Article  CAS  Google Scholar 

  • Chen H-L, Porter RS (1994) Composite of polyethylene and kenaf, a natural cellulose fiber. J Appl Polym Sci 54(11):1781–1783

    Article  CAS  Google Scholar 

  • Chen J, Tsubokawa N (2000) Electric properties of conducting composite from poly(ethylene oxide) and poly(ethylene oxide)-grafted carbon black in solvent vapor. Polym J 32(9):729–736

    Article  CAS  Google Scholar 

  • Chen YM, Gong JP, Osada Y (2007) Gel: a potential material as artificial soft tissue. Macromol Eng 4:2689–2717

    CAS  Google Scholar 

  • Chen D, Lawton D, Thompson MR, Liu Q (2012) Biocomposites reinforced with cellulose nanocrystals derived from potato peel waste. Carbohydr Polym 90(1):709–716

    Article  CAS  Google Scholar 

  • Clarke AR, Archenhold G, Davidson NC (1995) A novel technique for determining the 3D spatial distribution of glass fibres in polymer composites. Compos Sci Technol 55(1):75–91

    Article  CAS  Google Scholar 

  • Datta C, Basu D, Roy A, Banerjee A (2004) Mechanical and dynamic mechanical studies of epoxy/VAc-EHA/HMMM IPN-jute composite systems. J Appl Polym Sci 91(2):958–963

    Article  CAS  Google Scholar 

  • De Gennes PG (1979) Scaling concepts in polymer physics. Cornell University Press, Ithaca, NY

    Google Scholar 

  • De SK, Murty VM (1984) Short fiber-rubber composites. Polym Eng Rev 4(4):313–343

    CAS  Google Scholar 

  • Dikobe DG, Luyt AS (2007) Effect of poly (ethylene-co-glycidyl methacrylate) compatibilizer content on the morphology and physical properties of ethylene vinyl acetate-wood fiber composites. J Appl Polym Sci 104(5):3206–3213

    Article  CAS  Google Scholar 

  • Dinand E, Chanzy H, Vignon MR (1999) Suspensions of cellulose microfibrils from sugar beet pulp. Food Hydrocolloids 13(3):275–283

    Article  CAS  Google Scholar 

  • Doan T–T-L, Gao S-L, Maeder E (2006) Jute/polypropylene composites I. Effect of matrix modification. Compos Sci Technol 66(7–8):952–963

    Article  CAS  Google Scholar 

  • Dong XM, Revol J-F, Gray DG (1998) Effect of microcrystallite preparation conditions on the formation of colloid crystals of cellulose. Cellulose 5(1):19–32

    Article  CAS  Google Scholar 

  • Dong H, Strawhecker KE, Snyder JF, Orlicki JA, Reiner RS, Rudie AW (2012) Cellulose nanocrystals as a reinforcing material for electrospun poly(methyl methacrylate) fibers: formation, properties and nanomechanical characterization. Carbohydr Polym 87(4):2488–2495

    Article  CAS  Google Scholar 

  • Duanmu J, Gamstedt EK, Rosling A (2007) Synthesis and preparation of crosslinked allylglycidyl ether-modified starch-wood fibre composites. Starch 59:523–532

    Article  CAS  Google Scholar 

  • Dubief D, Samain E, Dufresne A (1999) Polysaccharide microcrystals reinforced amorphous poly (β-hydroxyoctanoate) nanocomposite materials. Macromolecules 32(18):5765–5771

    Article  CAS  Google Scholar 

  • Duchemin BJC, Newman RH, Staiger MP (2009) Structure-property relationship of all-cellulose composites. Compos Sci Technol 69(7–8):1225–1230

    Article  CAS  Google Scholar 

  • Dufresne A (2000) Dynamic mechanical analysis of the interphase in bacterial polyester/cellulose whiskers natural composites. Compos Interfaces 7(1):53–67

    Article  CAS  Google Scholar 

  • Dufresne A (2003) Interfacial phenomena in nanocomposites based on polysaccharide nanocrystals. Compos Interfaces 10(4–5):369–387

    Article  CAS  Google Scholar 

  • Dufresne A, Cavaille J-Y, Helbert W (1997) Thermoplastic nanocomposites filled with wheat straw cellulose whiskers. Part II: effect of processing and modeling. Polym Compos 18(2):198–210

    Article  CAS  Google Scholar 

  • Dufresne A, Kellerhals MB, Witholt B (1999) Transcrystallization in Mcl-PHAs/cellulose whiskers composites. Macromolecules 32(22):7396–7401

    Article  CAS  Google Scholar 

  • Edge S, Steele DF, Chen A, Tobyn MJ, Staniforth JN (2000) The mechanical properties of compacts of microcrystalline cellulose and silicified microcrystalline cellulose. Int J Pharm 200(1):67–72

    Article  CAS  Google Scholar 

  • Eichhorn SJ (2011) Cellulose nanowhiskers: promising materials for advanced applications. Soft Matter 7(2):303–315

    Article  CAS  Google Scholar 

  • Eichhorn SJ, Young RJ (2001) The Young’s modulus of a microcrystalline cellulose. Cellulose 8(3):197–207

    Article  CAS  Google Scholar 

  • Eichhorn SJ, Young RJ (2004) Composite micromechanics of hemp fibres and epoxy resin microdroplets. Compos Sci Technol 64(5):767–772

    Article  CAS  Google Scholar 

  • Elazzouzi S, Nishiyama Y, Putaux J-L, Paintrand I, Schmutz M, Heux L (2006) Chiral nematic suspensions of cellulose whiskers in water and in organic solvents. Paper presented at the 231st ACS National Meeting, Atlanta, GA, United States

  • Evans BR, O’Neill HM, Malyvanh VP, Lee I, Woodward J (2003) Palladium-bacterial cellulose membranes for fuel cells. Biosens Bioelectron 18(7):917–923

    Article  CAS  Google Scholar 

  • Favier V, Canova GR, Cavaille JY, Chanzy H, Dufresne A, Gauthier C (1995a) Nanocomposite materials from latex and cellulose whiskers. Polym Adv Technol 6(5):351–355

    Article  CAS  Google Scholar 

  • Favier V, Chanzy H, Cavaille JY (1995b) Polymer nanocomposites reinforced by cellulose whiskers. Macromolecules 28(18):6365–6367

    Article  CAS  Google Scholar 

  • Favier V, Canova GR, Shrivastava SC, Cavaille JY (1997) Mechanical percolation in cellulose whisker nanocomposites. Polym Eng Sci 37(10):1732–1739

    Article  CAS  Google Scholar 

  • Fedullo N, Sorlier E, Sclavons M, Bailly C, Lefebvre JM, Devaux J (2007) Polymer-based nanocomposites: overview, applications and perspectives. Prog Org Coat 58(2–3):87–95

    Article  CAS  Google Scholar 

  • Fekete R, Zelko R, Marton S, Racz I (1998) Effect of the formulation parameters on the characteristics of pellets. Drug Dev Ind Pharm 24(11):1073–1076

    Article  CAS  Google Scholar 

  • Felix J, Gatenholm P, Schreiber HP (1994) Plasma modification of cellulose fibers: effects on some polymer composite properties. J Appl Polym Sci 51(2):285–295

    Article  CAS  Google Scholar 

  • Fink HP, Weigel P, Purz HJ, Ganster J (2001) Structure formation of regenerated cellulose materials from NMMO-solutions. Prog Polym Sci 26(9):1473–1524

    Article  CAS  Google Scholar 

  • Forgacs OL (1963) The characterization of mechanical pulps. Pulp Paper Mag Can 64(C):T89

    Google Scholar 

  • Frey-Wyssling A (1954) The fine structure of cellulose microfibrils. Science 119:80

    Article  CAS  Google Scholar 

  • Frone AN, Panaitescu DM, Donescu D, Spataru CI, Radovici C, Trusca R, Somoghi R (2011) Preparation and characterization of PVA composites with cellulose nanofibers obtained by ultrasonication. BioRes 6(1):487–512

    CAS  Google Scholar 

  • Fukuda S, Takahashi M, Yuyama M, Oka N (2001) Incontinence pads using highly absorbent sheets. JP Patent 2001340369

  • Funami T, Kishimoto K, Tsutsumino T (2006) Food gels for distribution at normal temperature. JP Patent 2006212006

  • Fung CP (2004) Fibre orientation of fibre-reinforced PBT composites in injection moulding. Plast, Rubber Compos 33(4):170–176

    Article  CAS  Google Scholar 

  • Gindl W, Keckes J (2005) All-cellulose nanocomposite. Polymer 46(23):10221–10225

    Article  CAS  Google Scholar 

  • Gindl W, Martinschitz KJ, Boesecke P, Keckes J (2006a) Changes in the molecular orientation and tensile properties of uniaxially drawn cellulose films. Biomacromolecules 7(11):3146–3150

    Article  CAS  Google Scholar 

  • Gindl W, Martinschitz KJ, Boesecke P, Keckes J (2006b) Structural changes during tensile testing of an all-cellulose composite by in situ synchrotron X-ray diffraction. Compos Sci Technol 66(15):2639–2647

    Article  CAS  Google Scholar 

  • Gousse C, Chanzy H, Excoffier G, Soubeyrand L, Fleury E (2002) Stable suspensions of partially silylated cellulose whiskers dispersed in organic solvents. Polymer 43(9):2645–2651

    Article  CAS  Google Scholar 

  • Graenacher C (1934) Cellulose solution. US Patent 1943176

  • Grishanov SA, Harwood RJ, Booth I (2006) A method of estimating the single flax fibre fineness using data from the LaserScan system. Ind Crops Prod 23(3):273–287

    Article  Google Scholar 

  • Grunert M, Winter WT (2002) Nanocomposites of cellulose acetate butyrate reinforced with cellulose nanocrystals. J Polym Environ 10(1/2):27–30

    Article  CAS  Google Scholar 

  • Guhados G, Wan W, Hutter JL (2005) Measurement of the elastic modulus of single bacterial cellulose fibers using atomic force microscopy. Langmuir 21(14):6642–6646

    Article  CAS  Google Scholar 

  • Guo J, Catchmark JM (2012) Surface area and porosity of acid hydrolyzed cellulose nanowhiskers and cellulose produced by Gluconacetobacter xylinus. Carbohydr Polym 87(2):1026–1037

    Article  CAS  Google Scholar 

  • Habibi Y, Chanzy H, Vignon M (2006) TEMPO-mediated surface oxidation of cellulose whiskers. Cellulose 13(6):679–687

    Article  CAS  Google Scholar 

  • Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110(6):3479–3500

    Article  CAS  Google Scholar 

  • Hajji P, Cavaille JY, Favier V, Gauthier C, Vigier G (1996) Tensile behavior of nanocomposites from latex and cellulose whiskers. Polym Compos 17(4):612–619

    Article  CAS  Google Scholar 

  • Halpin JC, Kardos JL (1972) Moduli of crystalline polymers employing composite theory. J Appl Phys 43(5):2235–2241

    Article  CAS  Google Scholar 

  • Hamad WY (2002) Cellulosic materials-fibers, networks and composites. Kluwer Academic Publishers, Massachusetts

    Book  Google Scholar 

  • Hamad WY, Eichhorn S (1997) Deformation micromechanics of regenerated cellulose fibers using Raman spectroscopy. J Eng Mater Technol 119(3):309–313

    Article  CAS  Google Scholar 

  • Hammersley JM (1957) Percolation processes. II. The connective constant. Proc Camb Philol Soc 53:642–645

    Article  CAS  Google Scholar 

  • Han D, Yan L (2010) Preparation of all-cellulose composite by selective dissolving of cellulose surface in PEG/NaOH aqueous solution. Carbohydr Polym 79(3):614–619

    Article  CAS  Google Scholar 

  • Hancock BC, Clas SD, Christensen K (2000) Micro-scale measurement of the mechanical properties of compressed pharmaceutical powders. 1: the elasticity and fracture behavior of microcrystalline cellulose. Int J Pharm 209(1–2):27–35

    Article  CAS  Google Scholar 

  • Hatakeyama H, Kato N, Nanbo T, Hatakeyama T (2012) Water absorbent polyurethane composites derived from molasses and lignin filled with microcrystalline cellulose. J Mater Sci 47(20):7254–7261

    Article  CAS  Google Scholar 

  • Helbert W, Cavaille JY, Dufresne A (1996) Thermoplastic nanocomposites filled with wheat straw cellulose whiskers. Part I: processing and mechanical behavior. Polym Compos 17(4):604–611

    Article  CAS  Google Scholar 

  • Henriksson M, Berglund LA (2007) Structure and properties of cellulose nanocomposite films containing melamine formaldehyde. J Appl Polym Sci 106(4):2817–2824

    Article  CAS  Google Scholar 

  • Henriksson M, Henriksson G, Berglund LA, Lindstroem T (2007) An environmentally friendly method for enzyme-assisted preparation of microfibrillated cellulose (MFC) nanofibers. Eur Polym J 43(8):3434–3441

    Article  CAS  Google Scholar 

  • Henriksson M, Berglund LA, Isaksson P, Lindstroem T, Nishino T (2008) Cellulose nanopaper structures of high toughness. Biomacromolecules 9(6):1579–1585

    Article  CAS  Google Scholar 

  • Hileman GA, Upadrashta SM, Neau SH (1997) Drug solubility effects on predicting optimum conditions for extrusion and spheronization of pellets. Pharm Dev Technol 2(1):43–52

    Article  CAS  Google Scholar 

  • Hokens D, Mohanty AK, Misra M, Drzal LT (2002) The influence of surface modification and compatibilization on the performance of natural fiber reinforced biodegradable thermoplastic composite. Polymer Prepr 43(1):482–483

    CAS  Google Scholar 

  • Hristov V, Vlachopoulos J (2007) Influence of coupling agents on melt flow behavior of natural fiber composites. Macromol Mater Eng 292(5):608–619

    Article  CAS  Google Scholar 

  • Hsieh YC, Yano H, Nogi M, Eichhorn SJ (2008) An estimation of the Young’s modulus of bacterial cellulose filaments. Cellulose 15(4):507–513

    Article  CAS  Google Scholar 

  • Huber T, Bickerton S, Müssig J, Pang S, Staiger MP (2012a) Solvent infusion processing of all-cellulose composite materials. Carbohydr Polym 90(1):730–733

    Article  CAS  Google Scholar 

  • Huber T, Mössig J, Curnow O, Pang S, Bickerton S, Staiger M (2012b) A critical review of all-cellulose composites. J Mater Sci 47(3):1171–1186

    Article  CAS  Google Scholar 

  • Huber T, Pang S, Staiger MP (2012c) All-cellulose composite laminates. Compos A 43(10):1738–1745

    Article  CAS  Google Scholar 

  • Huda MS, Drzal LT, Misra M, Mohanty AK (2006) Wood-fiber-reinforced poly (lactic acid) composites: evaluation of the physicomechanical and morphological properties. J Appl Polym Sci 102(5):4856–4869

    Article  CAS  Google Scholar 

  • Hull D, Clyne TW (1996) An introduction to composite materials. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Huq T, Salmieri S, Khan A, Khan RA, Le Tien C, Riedl B, Fraschini C, Bouchard J, Uribe-Calderon J, Kamal MR, Lacroix M (2012) Nanocrystalline cellulose (NCC) reinforced alginate based biodegradable nanocomposite film. Carbohydr Polym 90(4):1757–1763

    Article  CAS  Google Scholar 

  • Idicula M, Boudenne A, Umadevi L, Ibos L, Candau Y, Thomas S (2006) Thermophysical properties of natural fibre reinforced polyester composites. Compos Sci Technol 66(15):2719–2725

    Article  CAS  Google Scholar 

  • Imai T, Boisset C, Samejima M, Igarashi K, Sugiyama J (1998) Unidirectional processive action of cellobiohydrolase Cel7A on Valonia cellulose microcrystals. FEBS Lett 432(3):113–116

    Article  CAS  Google Scholar 

  • Iwamoto S, Kai W, Isogai A, Iwata T (2009) Elastic modulus of single cellulose microfibrils from tunicate measured by atomic force microscopy. Biomacromolecues 10(9):2571–2576

    Article  CAS  Google Scholar 

  • Iwatake A, Nogi M, Yano H (2008) Cellulose nanofiber-reinforced polylactic acid. Compos Sci Technol 68(9):2103–2106

    Article  CAS  Google Scholar 

  • Jing H, Liu Z, Li H-y, Wang G-h, Pu J-w (2007) Solubility of wood-cellulose in LiCl/DMAC solvent system. For Stud China 9(3):217–220

    Article  CAS  Google Scholar 

  • Joly C, Kofman M, Gauthier R (1996) Polypropylene/cellulosic fiber composites: chemical treatment of the cellulose assuming compatibilization between the two materials. J Macromol Sci, Pure Appl Chem A33(12):1981–1996

    Article  CAS  Google Scholar 

  • Kachrimanis K, Malamataris S (2004) “Apparent” Young’s elastic modulus and radial recovery for some tableted pharmaceutical excipients. Eur J Pharm Sci 21(2–3):197–207

    Article  CAS  Google Scholar 

  • Kaith BS, Singha AS, Dwivedi DK, Kumar S, Kumar D, Dhemeniya A (2003) Preparation of polystyrene matrix based composites using flax-g-copolymers as reinforcing agent and evaluation of their mechanical behaviour. Int J Plast Technol 7(2):119–125

    CAS  Google Scholar 

  • Karmarkar A, Chauhan SS, Modak JM, Chanda M (2007) Mechanical properties of woodfiber reinforced polypropylene composites: effect of a novel compatibilizer with isocyanate functional group. Compos A 38(2):227–233

    Article  CAS  Google Scholar 

  • Kashiwagi T, Grulke E, Hilding J, Groth K, Harris R, Butler K, Shields J, Kharchenko S, Douglas J (2004) Thermal and flammability properties of polypropylene/carbon nanotube nanocomposites. Polymer 45(12):4227–4239

    Article  CAS  Google Scholar 

  • Kato K, Vasilets VN, Fursa MN, Meguro M, Ikada Y, Nakamae K (1999) Surface oxidation of cellulose fibers by vacuum ultraviolet irradiation. J Polym Sci, Part A: Polym Chem 37(3):357–361

    Article  CAS  Google Scholar 

  • Keller A (2003) Compounding and mechanical properties of biodegradable hemp fibre composites. Compos Sci Technol 63(9):1307–1316

    Article  CAS  Google Scholar 

  • Khan M, Haque N, Al-Kafi A, Alam MN, Abedin MZ (2006) Jute reinforced polymer composite by gamma radiation: effect of surface treatment with UV radiation. Polym Plast Technol Eng 45(5):607–613

    Article  CAS  Google Scholar 

  • Khan A, Khan RA, Salmieri S, Le Tien C, Riedl B, Bouchard J, Chauve G, Tan V, Kamal MR, Lacroix M (2012) Mechanical and barrier properties of nanocrystalline cellulose reinforced chitosan based nanocomposite films. Carbohydr Polym 90(4):1601–1608

    Article  CAS  Google Scholar 

  • Kiziltas A, Gardner DJ, Han Y, Yang H-S (2011a) Dynamic mechanical behavior and thermal properties of microcrystalline cellulose (MCC)-filled nylon 6 composites. Thermochim Acta 519(1–2):38–43

    Article  CAS  Google Scholar 

  • Kiziltas A, Gardner DJ, Han Y, Yang H-S (2011b) Thermal properties of microcrystalline cellulose-filled PET-PTT blend polymer composites. J Therm Anal Calorim 103(1):163–170

    Article  CAS  Google Scholar 

  • Kolar J, Strlic M, Müller-Hess D, Gruber A, Troschke K, Pentzien S, Kautek W (2000) Near-UV and visible pulsed laser interaction with paper. J Cult Herit 1:S221–S224

    Article  Google Scholar 

  • Kong K, Eichhorn SJ (2005) Crystalline and amorphous deformation of process-controlled cellulose-II fibres. Polymer 46(17):6380–6390

    Article  CAS  Google Scholar 

  • Krogars K, Heinamaki J, Vesalahti J, Marvola M, Antikainen O, Yliruusi J (2000) Extrusion-spheronization of pH-sensitive polymeric matrix pellets for possible colonic drug delivery. Int J Pharm 199(2):187–194

    Article  CAS  Google Scholar 

  • Krystynowicz A, Czaja W, Wiktorowska-Jezierska A, Goncalves-Miskiewicz M, Turkiewicz M, Bielecki S (2002) Factors affecting the yield and properties of bacterial cellulose. J Ind Microbiol Biotechnol 29(4):189–195

    Article  CAS  Google Scholar 

  • Kumar V, Medina MDLR, Leuenberger H (2005) Crosslinked powered/microfibrillated cellulose II as a pharmaceutical excipient. US Patent 2005287208

  • Kvien I, Sugiyama J, Votrubec M, Oksman K (2007) Characterization of starch based nanocomposites. J Mater Sci 42(19):8163–8171

    Article  CAS  Google Scholar 

  • Lahiji RR, Xu X, Reifenberger R, Raman A, Rudie A, Moon RJ (2010) Atomic force microscopy characterization of cellulose nanocrystals. Langmuir 26(6):4480–4488

    Article  CAS  Google Scholar 

  • Laka M, Chernyavskaya S, Maskavs M (2003) Cellulose-containing fillers for polymer composites. Mech Compos Mater 39(2):183–188

    Article  CAS  Google Scholar 

  • Lee SY, Kang IA, Doh GH, Yoon HG, Park BD (2008) Thermal and mechanical properties of wood flour/talc-filled polylactic acid composites: effect of filler content and coupling treatment. J Thermoplast Compos Mater 21(3):209–223

    Article  CAS  Google Scholar 

  • Lei Y, Wu Q, Yao F, Xu Y (2007) Preparation and properties of recycled HDPE/natural fiber composites. Compos A 38(7):1664–1674

    Article  CAS  Google Scholar 

  • Lenz J, Schurz J, Wrentschur E (1994) On the elongation mechanism of regenerated cellulose fibers. Holzforschung 48(Suppl.):72–76

    Article  CAS  Google Scholar 

  • Li F, Biagioni P, Finazzi M, Tavazzi S, Piergiovanni L (2013) Tunable green oxygen barrier through layer-by-layer self-assembly of chitosan and cellulose nanocrystals. Carbohydr Polym 92(2):2128–2134

    Article  CAS  Google Scholar 

  • Limwong V, Sutanthavibul N, Kulvanich P (2004) Spherical composite particles of rice starch and microcrystalline cellulose: a new coprocessed excipient for direct compression. AAPS PharmSciTech 5(2):e30

    Article  Google Scholar 

  • Lin N, Chen G, Huang J, Dufresne A, Chang PR (2009) Effects of polymer-grafted natural nanocrystals on the structure and mechanical properties of poly(lactic acid): a case of cellulose whisker-graft-polycaprolactone. J Appl Polym Sci 113(5):3417–3425

    Article  CAS  Google Scholar 

  • Ljungberg N, Bonini C, Bortolussi F, Boisson C, Heux L, Cavaille JY (2005) New nanocomposite materials reinforced with cellulose whiskers in atactic polypropylene: effect of surface and dispersion characteristics. Biomacromolecules 6(5):2732–2739

    Article  CAS  Google Scholar 

  • Ljungberg N, Cavaille JY, Heux L (2006) Nanocomposites of isotactic polypropylene reinforced with rod-like cellulose whiskers. Polymer 47(18):6285–6292

    Article  CAS  Google Scholar 

  • Lu JZ, Negulescu II, Wu Q (2005a) Maleated wood-fiber/high-density-polyethylene composites: coupling mechanisms and interfacial characterization. Compos Interfaces 12(1):125–140

    Article  CAS  Google Scholar 

  • Lu JZ, Wu Q, Negulescu II (2005b) Wood-fiber/high-density-polyethylene composites: coupling agent performance. J Appl Polym Sci 96(1):93–102

    Article  CAS  Google Scholar 

  • Lu W, Lin H, Chen G (2007) Voltage-induced resistivity relaxation in a high-density polyethylene/graphite nanosheet composite. J Polym Sci, Part B: Polym Phys 45(7):860–863

    Article  CAS  Google Scholar 

  • Lu J, Askeland P, Drzal LT (2008) Surface modification of microfibrillated cellulose for epoxy composite applications. Polymer 49(5):1285–1296

    Article  CAS  Google Scholar 

  • Luo H, Xiong G, Huang Y, He F, Wang Y, Wan Y (2008) Preparation and characterization of a novel COL/BC composite for potential tissue engineering scaffolds. Mater Chem Phys 110(2–3):193–196

    Article  CAS  Google Scholar 

  • Luukkonen P, Schaefer T, Hellen L, Juppo AM, Yliruusi J (1999) Rheological characterization of microcrystalline cellulose and silicified microcrystalline cellulose wet masses using a mixer torque rheometer. Int J Pharm 188(2):181–192

    Article  CAS  Google Scholar 

  • Ma H, Zhou B, Li H-S, Li Y-Q, Ou S-Y (2011) Green composite films composed of nanocrystalline cellulose and a cellulose matrix regenerated from functionalized ionic liquid solution. Carbohydr Polym 84(1):383–389

    Article  CAS  Google Scholar 

  • Maldas D, Kokta BV (1990) Effect of fiber treatment on the mechanical properties of hybrid fiber-reinforced polystyrene composites. I. Use of mica and wood pulp as hybrid filler. J Compos Technol Res 12(4):217–221

    Article  CAS  Google Scholar 

  • Maldas D, Kokta BV (1991a) Effect of fiber treatment on the mechanical properties of hybrid fiber reinforced polystyrene composites: IV. Use of glass fiber and sawdust as hybrid fiber. J Compos Mater 25(4):375–390

    CAS  Google Scholar 

  • Maldas D, Kokta BV (1991b) Performance of treated hybrid fiber-reinforced thermoplastic composites under extreme conditions. IV. Use of glass fiber and sawdust as hybrid fiber. J Appl Polym Sci 42(5):1443–1450

    Article  CAS  Google Scholar 

  • Maldas D, Kokta BV (1991c) Performance of treated hybrid fiber-reinforced thermoplastic composites under extreme conditions: part I—use of mica and wood pulp as hybrid fiber. Polym Degrad Stab 31(1):9–21

    Article  CAS  Google Scholar 

  • Maldas D, Kokta BV (1992) Performance of hybrid reinforcements in PVC composites: III. Use of surface-modified glass fiber and wood pulp as reinforcements. J Reinf Plast Compos 11(10):1093–1102

    Article  CAS  Google Scholar 

  • Manchado MAL, Arroyo M, Biagiotti J, Kenny JM (2003) Enhancement of mechanical properties and interfacial adhesion of PP/EPDM/flax fiber composites using maleic anhydride as a compatibilizer. J Appl Polym Sci 90(8):2170–2178

    Article  CAS  Google Scholar 

  • Marchessault RH, Morehead FF, Walter NM (1959) Liquid crystal systems from fibrillar polysaccharides. Nature 184(Suppl. No. 9):632

    Article  CAS  Google Scholar 

  • Marins J, Soares B, Dahmouche K, Ribeiro SL, Barud H, Bonemer D (2011) Structure and properties of conducting bacterial cellulose-polyaniline nanocomposites. Cellulose 18(5):1285–1294

    Article  CAS  Google Scholar 

  • Mathew AP, Dufresne A (2002) Morphological investigation of nanocomposites from sorbitol plasticized starch and tunicin whiskers. Biomacromolecules 3(3):609–617

    Article  CAS  Google Scholar 

  • Mathew AP, Oksman K, Sain M (2005) Mechanical properties of biodegradable composites from poly lactic acid (PLA) and microcrystalline cellulose (MCC). J Appl Polym Sci 97(5):2014–2025

    Article  CAS  Google Scholar 

  • Mathew AP, Chakraborty A, Oksman K, Sain M (2006) The structure and mechanical properties of cellulose nanocomposites prepared by twin screw extrusion. In: Oksman K, Sain M (eds) Cellulose nanocomposites-processing, characterization and properties. American Chemical Society, Washington DC, p 114

    Chapter  Google Scholar 

  • Matsuda Y (2000) Properties and use of microfibrillated cellulose as papermaking additive. Sen’i Gakkaishi 56(7):192–196

    Article  Google Scholar 

  • Mehta G, Mohanty AK, Drzal LT, Misra M (2003) Bio-composites from engineered kenaf natural fibers and unsaturated polyester resin for low cost housing applications. PMSE Prepr 88:56–57

    CAS  Google Scholar 

  • Millon LE, Wan WK (2006) The polyvinyl alcohol-bacterial cellulose system as a new nanocomposite for biomedical applications. J Biomed Mater Res B Appl Biomater 79B(2):245–253

    Article  CAS  Google Scholar 

  • Mirbagheri J, Tajvidi M, Hermanson JC, Ghasemi I (2007) Tensile properties of wood flour/kenaf fiber polypropylene hybrid composites. J Appl Polym Sci 105(5):3054–3059

    Article  CAS  Google Scholar 

  • Mizoguchi K, Ishikawa M, Ohkubo S, Yamamoto A, Ouchi A, Sakuragi M, Ito T, Sugiyama O (2001) Laser surface treatment of regenerated cellulose fiber. Compos Interfaces 7(6):497–509

    CAS  Google Scholar 

  • Mohanty AK, Misra M, Drzal LT (2001) Surface modifications of natural fibers and performance of the resulting biocomposites: an overview. Compos Interfaces 8(5):313–343

    Article  CAS  Google Scholar 

  • Nair KG, Dufresne A, Gandini A, Belgacem MN (2003) Crab shell chitin whiskers reinforced natural rubber nanocomposites. 3. Effect of chemical modification of chitin whiskers. Biomacromolecules 4(6):1835–1842

    Article  CAS  Google Scholar 

  • Nakagaito AN, Yano H (2004) Novel high-strength biocomposites based on microfibrillated cellulose having nano-order-unit web-like network structure. Appl Phys A Mater Sci Process 80(1):155–159

    Google Scholar 

  • Nakagaito AN, Yano H (2008a) The effect of fiber content on the mechanical and thermal expansion properties of biocomposites based on microfibrillated cellulose. Cellulose 15(4):555–559

    Article  CAS  Google Scholar 

  • Nakagaito AN, Yano H (2008b) Toughness enhancement of cellulose nanocomposites by alkali treatment of the reinforcing cellulose nanofibers. Cellulose 15(2):323–331

    Article  CAS  Google Scholar 

  • Nakagaito AN, Iwamoto S, Yano H (2005) Bacterial cellulose: the ultimate nano-scalar cellulose morphology for the production of high-strength composites. Appl Phys A Mater Sci Process 80(1):93–97

    Article  CAS  Google Scholar 

  • Nishi Y, Uryu M, Yamanaka S, Watanabe K, Kitamura N, Iguchi M, Mitsuhashi S (1990) The structure and mechanical properties of sheets prepared from bacterial cellulose. Part 2. Improvement of the mechanical properties of sheets and their applicability to diaphragms of electroacoustic transducers. J Mater Sci 25(6):2997–3001

    Article  CAS  Google Scholar 

  • Nishino T, Arimoto N (2007) All-cellulose composite prepared by selective dissolving of fiber surface. Biomacromolecules 8(9):2712–2716

    Article  CAS  Google Scholar 

  • Nishino T, Hirao K, Kotera M, Nakamae K, Inagaki H (2003) Kenaf reinforced biodegradable composite. Compos Sci Technol 63(9):1281–1286

    Article  CAS  Google Scholar 

  • Nishino T, Matsuda I, Hirao K (2004) All-cellulose composite. Macromolecules 37(20):7683–7687

    Article  CAS  Google Scholar 

  • Nishiyama S, Funato N, Sawatari A (1993) Analysis of the functional groups formed on the corona-treated cellulose fiber sheet surface by chemical modification in gas-phase ESCA technique. Sen’i Gakkaishi 49(7):357–366

    Article  CAS  Google Scholar 

  • Njuguna J, Pielichowski K, Alcock JR (2007) Epoxy-based fibre reinforced nanocomposites. Adv Eng Mater 9(10):835–847

    Article  Google Scholar 

  • Nourbakhsh A, Ashori A (2008) Fundamental studies on wood-plastic composites: effects of fiber concentration and mixing temperature on the mechanical properties of poplar/PP composite. Polym Compos 29(5):569

    Article  CAS  Google Scholar 

  • Oksman K, Mathew AP, Bondeson D, Kvien I (2006) Manufacturing process of cellulose whiskers/polylactic acid nanocomposites. Compos Sci Technol 66(15):2776–2784

    Article  CAS  Google Scholar 

  • Oliveira Taipina M, Ferrarezi M, Yoshida IVP, Gonçalves Md (2013) Surface modification of cotton nanocrystals with a silane agent. Cellulose 20(1):217–226

    Article  CAS  Google Scholar 

  • Ouali N, Cavaille JY, Perez J (1991) Elastic, viscoelastic and plastic behavior of multiphase polymer blends. Plast Rubber Compos Process Appl 16(1):55–60

    CAS  Google Scholar 

  • Page DH (1969) Theory for the tensile strength of paper. Tappi 52(4):674–681

    CAS  Google Scholar 

  • Page DH, El-Hosseiny F, Winkler K (1971) Behaviour of single wood fibres under axial tensile strain. Nature 229:252–253

    Article  CAS  Google Scholar 

  • Pan P, Zhu B, Dong T, Serizawa S, Iji M, Inoue Y (2008) Kenaf fiber/poly(e-caprolactone) biocomposite with enhanced crystallization rate and mechanical properties. J Appl Polym Sci 107(6):3512–3519

    Article  CAS  Google Scholar 

  • Panshin AJ, de Zeeuw C (1980) Textbook of wood technology: structure, identification, properties, and uses of the commercial woods of the United States and Canada. McGraw-Hill, New York, NY

    Google Scholar 

  • Pei A, Malho J-M, Ruokolainen J, Zhou Q, Berglund LA (2011) Strong nanocomposite reinforcement effects in polyurethane elastomer with low volume fraction of cellulose nanocrystals. Macromolecules 44(11):4422–4427

    Article  CAS  Google Scholar 

  • Petersson L, Oksman K (2006) Preparation and properties of biopolymer-based nanocomposite films using microcrystalline cellulose. In: Oksman K, Sain M (eds) Cellulose nanocomposites-processing, characterization and properties. American Chemistry Society, Washington DC, p 132

    Chapter  Google Scholar 

  • Petersson L, Kvien I, Oksman K (2007) Structure and thermal properties of poly(lactic acid)/cellulose whiskers nanocomposite materials. Compos Sci Technol 67(11–12):2535–2544

    Article  CAS  Google Scholar 

  • Phiriyawirut M, Saenpong P, Chalermboon S, Sooksakoolrut R, Pochanajit N, Vuttikit L, Thongchai A, Supaphol P (2008) Isotactic poly(propylene)/wood sawdust composite: effects of natural weathering, water immersion, and gamma-ray irradiation on mechanical properties. Macromol Symp 264(1):59–66

    Article  CAS  Google Scholar 

  • Pullawan T, Wilkinson AN, Eichhorn SJ (2010) Discrimination of matrix-fibre interactions in all-cellulose nanocomposites. Compos Sci Technol 70(16):2325–2330

    Article  CAS  Google Scholar 

  • Pullawan T, Wilkinson AN, Eichhorn SJ (2012) Influence of magnetic field alignment of cellulose whiskers on the mechanics of all-cellulose nanocomposites. Biomacromolecules 13(8):2528–2536

    Article  CAS  Google Scholar 

  • Qi H, Cai J, Zhang L, Kuga S (2009) Properties of films composed of cellulose nanowhiskers and a cellulose matrix regenerated from alkali/urea solution. Biomacromolecules 10(6):1597–1602

    Article  CAS  Google Scholar 

  • Qin C, Soykeabkaew N, Xiuyuan N, Peijs T (2008) The effect of fibre volume fraction and mercerization on the properties of all-cellulose composites. Carbohydr Polym 71(3):458–467

    Article  CAS  Google Scholar 

  • Qiu K, Netravali AN (2012) Fabrication and characterization of biodegradable composites based on microfibrillated cellulose and polyvinyl alcohol. Compos Sci Technol 72(13):1588–1594

    Article  CAS  Google Scholar 

  • Quillin DT, Caulfield DF, Koutsky JA (1992) Surface energy compatibilities of cellulose and polypropylene. Mater Res Soc Symp Proc 266:113–126

    Article  CAS  Google Scholar 

  • Quillin DT, Caufield DF, Koutsky JA (1993) Crystallinity in the polypropylene/cellulose system. I. Nucleation and crystalline morphology. J Appl Polym Sci 50(7):1187–1194

    Article  CAS  Google Scholar 

  • Quillin DT, Yin M, Koutsky JA, Caulfield DF (1994) Crystallinity in the polypropylene/cellulose system. II. Crystallization kinetics. J Appl Polym Sci 52(5):605–615

    Article  CAS  Google Scholar 

  • Radovanovic B, Markovic G, Radovanovic A (2008) Wood flour as a secondary filler in carbon black filled of styrene butadiene/chlorosulphonated polyethylene rubber blend. Polym Compos 29(6):692–697

    Article  CAS  Google Scholar 

  • Rånby BG (1951) The colloidal properties of cellulose micelles. Discuss Faraday Soc 11:158–164 (discussion 208–113)

    Article  Google Scholar 

  • Rånby BG (1952) The cellular micelles. Tappi 35:53–58

    Google Scholar 

  • Ray PK, Chakravarty AC, Bandyopadhyay SB (1976) Fine structure and mechanical properties of jute differently dried after retting. J Appl Polym Sci 20(7):1765–1767

    Article  CAS  Google Scholar 

  • Report (2002) Annual report of the government-industry forum on non-food uses of crops. Department for Environment, Food and Rural Affairs, EU

  • Retegi A, Algar I, Martin L, Altuna F, Stefani P, Zuluaga R, Gañán P, Mondragon I (2012) Sustainable optically transparent composites based on epoxidized soy-bean oil (ESO) matrix and high contents of bacterial cellulose (BC). Cellulose 19(1):103–109

    Article  CAS  Google Scholar 

  • Revol JF, Bradford H, Giasson J, Marchessault RH, Gray DG (1992) Helicoidal self-ordering of cellulose microfibrils in aqueous suspension. Int J Biol Macromol 14(3):170–172

    Article  CAS  Google Scholar 

  • Revol JF, Godbout L, Dong XM, Gray DG, Chanzy H, Maret G (1994) Chiral nematic suspensions of cellulose crystallites; phase separation and magnetic field orientation. Liq Cryst 16(1):127–134

    Article  CAS  Google Scholar 

  • Revol JF, Godbout L, Gray DG (1998) Solid self-assembled films of cellulose with chiral nematic order and optically variable properties. J Pulp Pap Sci 24(5):146–149

    CAS  Google Scholar 

  • Rezaei F, Yunus R, Ibrahim NA, Mahdi ES (2008) Development of short-carbon-fiber-reinforced polypropylene composite for car bonnet. Polym Plast Technol Eng 47(4):351–357

    Article  CAS  Google Scholar 

  • Rodionova G, Lenes M, Eriksen Ø, Gregersen Ø (2011) Surface chemical modification of microfibrillated cellulose: improvement of barrier properties for packaging applications. Cellulose 18(1):127–134

    Article  CAS  Google Scholar 

  • Roman M, Winter WT (2004) Effect of sulfate groups from sulfuric acid hydrolysis on the thermal degradation behavior of bacterial cellulose. Biomacromolecules 5(5):1671–1677

    Article  CAS  Google Scholar 

  • Ruiz MM, Cavaille JY, Dufresne A, Graillat C, Gerard J-F (2001) New waterborne epoxy coatings based on cellulose nanofillers. Macromol Symp 169(1):211–222

    Article  CAS  Google Scholar 

  • Sabharwal HS, Denes F, Nielsen L, Young RA (1993) Free-radical formation in jute from argon plasma treatment. J Agric Food Chem 41(11):2202–2207

    Article  CAS  Google Scholar 

  • Saechtling H (1987) Saechtling international plastics handbook for the technologist, engineer, and user. Carl Hanser Verlag, Munich

    Google Scholar 

  • Sahoo PK, Sahu GC, Rana PK, Das AK (2005) Preparation, characterization, and biodegradability of jute-based natural fiber composite superabsorbents. Adv Polym Technol 24(3):208–214

    Article  CAS  Google Scholar 

  • Saito T, Nishiyama Y, Putaux J-L, Vignon M, Isogai A (2006) Homogeneous suspensions of individualized microfibrils from TEMPO-catalyzed oxidation of native cellulose. Biomacromolecules 7(6):1687–1691

    Article  CAS  Google Scholar 

  • Saito T, Kuramae R, Wohlert J, Berglund LA, Isogai A (2013) An ultrastrong nanofibrillar biomaterial: the strength of single cellulose nanofibrils revealed via sonication-induced fragmentation. Biomacromolecules 14(1):248–253

    Article  CAS  Google Scholar 

  • Sakamoto A (2008) Sauce compositions containing stabilizers. JP Patent 2008271879

  • Sakurada I, Nukushina Y (1962) Experimental determination of the elastic modulus of crystalline regions in oriented polymers. J Polym Sci 57(165):651–660

    Article  CAS  Google Scholar 

  • Samir MASA, Alloin F, Sanchez J-Y, Dufresne A (2004a) Cross-linked nanocomposite polymer electrolytes reinforced with cellulose whiskers. Macromolecules 37(13):4839–4844

    Article  CAS  Google Scholar 

  • Samir MASA, Alloin F, Sanchez J-Y, El Kissi N, Dufresne A (2004b) Preparation of cellulose whiskers reinforced nanocomposites from an organic medium suspension. Macromolecules 37(4):1386–1393

    Article  CAS  Google Scholar 

  • Samir MASA, Alloin F, Sanchez J-Y, Dufresne A (2004c) Cellulose nanocrystals reinforced poly(oxyethylene). Polymer 45(12):4149–4157

    Article  CAS  Google Scholar 

  • Samir MASA, Alloin F, Dufresne A (2005a) Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromolecules 6(2):612–626

    Article  CAS  Google Scholar 

  • Samir MASA, Alloin F, Sanchez J-Y, Dufresne A (2005b) Nanocomposite polymer electrolytes based on poly(oxyethylene) and cellulose whiskers. Polim Cienc Tecnol 15(2):109–113

    Article  CAS  Google Scholar 

  • Sarkhel G, Choudhury A (2008) Dynamic mechanical and thermal properties of PE-EPDM based jute fiber composites. J Appl Polym Sci 108(6):3442–3453

    Article  CAS  Google Scholar 

  • Sawatari A, Nakamura H (1993) Surface characterization of the corona-treated cellulose fiber sheet by chemical modification—ESCA technique. (Part 1). Analysis of the functional groups formed on the corona-treated cellulose fiber sheet surface by means of chemical modification in liquid phase-ESCA technique. Sen’i Gakkaishi 49(6):279–286

    Article  CAS  Google Scholar 

  • Seidel A (ed) (2004) Kirk-Othmer encyclopedia of chemical technology, vol 5, 5th edn. Wiley-Interscience, Hoboken

    Google Scholar 

  • Semsarzadeh MA (1986) Fiber matrix interactions in jute reinforced polyester resin. Polym Compos 7(1):23–25

    Article  CAS  Google Scholar 

  • Setua DK, De SK (1984) Short silk fibre reinforced nitrile rubber composites. J Mater Sci 19(3):983–999

    Article  CAS  Google Scholar 

  • Shah J, Brown Jr. RM (2005) Towards electronic paper displays made from microbial cellulose. Appl Microbiol Biotechnol 66(4):352

    Google Scholar 

  • Shang W, Huang J, Luo H, Chang P, Feng J, Xie G (2013) Hydrophobic modification of cellulose nanocrystal via covalently grafting of castor oil. Cellulose 20(1):179–190

    Article  CAS  Google Scholar 

  • Singh S, Mohanty AK (2007) Wood fiber reinforced bacterial bioplastic composites: fabrication and performance evaluation. Compos Sci Technol 67(9):1753–1763

    Article  CAS  Google Scholar 

  • Singh S, Mohanty AK, Sugie T, Takai Y, Hamada H (2008) Renewable resource based biocomposites from natural fiber and polyhydroxybutyrate-co-valerate (PHBV) bioplastic. Compos A 39(5):875–886

    Article  CAS  Google Scholar 

  • Siró I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17(3):459–494

    Article  CAS  Google Scholar 

  • Soykeabkaew N, Arimoto N, Nishino T, Peijs T (2008) All-cellulose composites by surface selective dissolution of aligned ligno-cellulosic fibres. Compos Sci Technol 68(10–11):2201–2207

    Article  CAS  Google Scholar 

  • Spence K, Venditti R, Rojas O, Habibi Y, Pawlak J (2010) The effect of chemical composition on microfibrillar cellulose films from wood pulps: water interactions and physical properties for packaging applications. Cellulose 17(4):835–848

    Article  CAS  Google Scholar 

  • Spence K, Venditti R, Rojas O, Habibi Y, Pawlak J (2011a) A comparative study of energy consumption and physical properties of microfibrillated cellulose produced by different processing methods. Cellulose 18(4):1097–1111

    Article  CAS  Google Scholar 

  • Spence K, Venditti R, Rojas O, Pawlak J, Hubbe M (2011b) Water vapor barrier properties of coated and filled microfibrillated cellulose composite films. BioRes 6(4):4370–4388

    CAS  Google Scholar 

  • Sretenovic A, Muller U, Gindl W (2006) Mechanism of stress transfer in a single wood fibre-LDPE composite by means of electronic laser speckle interferometry. Compos A 37(9):1406–1412

    Article  CAS  Google Scholar 

  • Srithep Y, Turng L-S, Sabo R, Clemons C (2012) Nanofibrillated cellulose (NFC) reinforced polyvinyl alcohol (PVOH) nanocomposites: properties, solubility of carbon dioxide, and foaming. Cellulose 19(4):1209–1223

    Article  CAS  Google Scholar 

  • Stauffer D (1985) Introduction to percolation theory. Talor and Francis, London

    Book  Google Scholar 

  • Šturcová A, Davies GR, Eichhorn SJ (2005) Elastic modulus and stress-transfer properties of tunicate cellulose whiskers. Biomacromolecules 6(2):1055–1061

    Article  CAS  Google Scholar 

  • Suddell BC, Evans WJ (2003) The increasing use and application of natural fiber composite materials within the automotive industry. In: Seventh international conference on woodfiber-plastic composites, Madison, Wisconsin, USA, pp 7–14

  • Suddell BC, Evans WJ (2005) Natural fiber composites in automotive applications. In: Mohanty AK, Misra M, Drzal LT (eds) Natural fibers, biopolymers and biocomposites. CRC, USA

    Google Scholar 

  • Sundar S, Sain M, Oksman K (2011) Thermal characterization and electrical properties of Fe-modified cellulose long fibers and micro crystalline cellulose. J Therm Anal Calorim 104(3):841–847

    Article  CAS  Google Scholar 

  • Swatloski RP, Spear SK, Holbrey JD, Rogers RD (2002) Dissolution of cellose with ionic liquids. J Am Chem Soc 124(18):4974–4975

    Article  CAS  Google Scholar 

  • Swatloski RP, Holbrey JD, Rogers RD (2003) Ionic liquids are not always green: hydrolysis of 1-butyl-3-methylimidazolium hexafluorophosphate. Green Chem 5(4):361–363

    Article  CAS  Google Scholar 

  • Tajvidi M (2005) Static and dynamic mechanical properties of a kenaf fiber-wood flour/polypropylene hybrid composite. J Appl Polym Sci 98(2):665–672

    Article  CAS  Google Scholar 

  • Takacs E, Wojnarovits L, Borsa J, Foldvary C, Hargittai P, Zold O (1999) Effect of gamma-irradiation on cotton-cellulose. Radiat Phys Chem 55(5–6):663–666

    Article  CAS  Google Scholar 

  • Taniguchi T, Okamura K (1998) New films produced from microfibrillated natural fibers. Polym Int 47(3):291–294

    Article  CAS  Google Scholar 

  • Tanpichai S, Quero F, Nogi M, Yano H, Young RJ, Lindström T, Sampson WW, Eichhorn SJ (2012a) Effective Young’s modulus of bacterial and microfibrillated cellulose fibrils in fibrous networks. Biomacromolecules 13(5):1340–1349

    Article  CAS  Google Scholar 

  • Tanpichai S, Sampson WW, Eichhorn SJ (2012b) Stress-transfer in microfibrillated cellulose reinforced poly(lactic acid) composites using Raman spectroscopy. Compos A 43(7):1145–1152

    Article  CAS  Google Scholar 

  • Thummanukitcharoen P, Limpanart S, Srikulkit K (2012) Preparation of organosilane treated microcrystalline (SiMCC) and SiMCC/polypropylene composites. J Metals Mater Miner 22(1):13–19

    CAS  Google Scholar 

  • Thuy Pham TP, Cho C-W, Yun Y-S (2010) Environmental fate and toxicity of ionic liquids: a review. Water Res 44(2):352–372

    Article  CAS  Google Scholar 

  • Thwe MM, Liao K (2000) Characterization of bamboo-glass fiber reinforced polymer matrix hybrid composite. J Mater Sci Lett 19(20):1873–1876

    Article  CAS  Google Scholar 

  • Thwe MM, Liao K (2003) Environmental effects on bamboo-glass/polypropylene hybrid composites. J Mater Sci 38(2):363–376

    Article  CAS  Google Scholar 

  • Thygesen A, Daniel G, Lilholt H, Thomsen AB (2005) Hemp fiber microstructure and use of fungal defibration to obtain fibers for composite materials. J Nat Fibers 2(4):19–37

    Article  CAS  Google Scholar 

  • Trejo-O’Reilly JA, Cavaille JY, Paillet M, Gandini A, Herrera-Franco P, Cauich J (2000) Interfacial properties of regenerated cellulose fiber/polystyrene composite materials. Effect of the coupling agent’s structure on the micromechanical behavior. Polym Compos 21(1):65–71

    Article  Google Scholar 

  • Tsai SW, Halpin JC, Pagano NJ (1968) Composite materials workshop. Technomic Publishing Co., New York

    Google Scholar 

  • Turbak AF, El-Kafrawy A, Snyder FW Jr, Auerbach AB (1981) Solvent system for celulose. US Patent 4302252

  • Turbak AF, Snyder FW, Sandberg KR (1983) Microfibrillated cellulose, a new cellulose product: properties, uses, and commercial potential. J Appl Polym Sci: Appl Polym Symp 37:815–827

    CAS  Google Scholar 

  • Uehara T, Sakata I (1990) Effect of corona discharge treatment on cellulose prepared from beechwood. J Appl Polym Sci 41(7–8):1695–1706

    Article  CAS  Google Scholar 

  • Ummartyotin S, Juntaro J, Sain M, Manuspiya H (2012) Development of transparent bacterial cellulose nanocomposite film as substrate for flexible organic light emitting diode (OLED) display. Ind Crops Prod 35(1):92–97

    Article  CAS  Google Scholar 

  • Urabe K, Yomoda S (1991) A nondestructive testing method of fiber orientation by microwave. Adv Compos Mater 1(3):193–208

    Article  CAS  Google Scholar 

  • Vallejos ME, Peresin MS, Rojas OJ (2012) All-cellulose composite fibers obtained by electrospinning dispersions of cellulose acetate and cellulose nanocrystals. J Polym Environ 20(4):1075–1083

    Article  CAS  Google Scholar 

  • van den Berg O, Capadona JR, Weder C (2007) Preparation of homogeneous dispersions of tunicate cellulose whiskers in organic solvents. Biomacromolecules 8(4):1353–1357

    Article  CAS  Google Scholar 

  • Vilay V, Mariatti M, Mat Taib R, Todo M (2008) Effect of fiber surface treatment and fiber loading on the properties of bagasse fiber-reinforced unsaturated polyester composites. Compos Sci Technol 68(3–4):631–638

    Article  CAS  Google Scholar 

  • Wang Y, Chen L (2011) Impacts of nanowhisker on formation kinetics and properties of all-cellulose composite gels. Carbohydr Polym 83(4):1937–1946

    Article  CAS  Google Scholar 

  • Wang N, Ding E, Cheng R (2007) Thermal degradation behaviors of spherical cellulose nanocrystals with sulfate groups. Polymer 48(12):3486–3493

    Article  CAS  Google Scholar 

  • Westerlind B, Larsson A, Rigdahl M (1987) Determination of the degree of adhesion in plasma-treated polyethylene/paper laminates. Int J Adhes Adhes 7(3):141–146

    Article  CAS  Google Scholar 

  • Whiteside BR, Coates PD, Hine PJ, Duckett RA (2000) Glass fibre orientation within injection moulded automotive pedal simulation and experimental studies. Plast, Rubber Compos 29(1):38–45

    CAS  Google Scholar 

  • Wu Q, Henriksson M, Liu X, Berglund LA (2007) A high strength nanocomposite based on microcrystalline cellulose and polyurethane. Biomacromolecules 8(12):3687–3692

    Article  CAS  Google Scholar 

  • Xiang C, Taylor AG, Hinestroza JP, Frey MW (2013) Controlled release of nonionic compounds from poly(lactic acid)/cellulose nanocrystal nanocomposite fibers. J Appl Polym Sci 127(1):79–86

    Article  CAS  Google Scholar 

  • Xiao L, Mai Y, He F, Yu L, Zhang L, Tang H, Yang G (2012) Bio-based green composites with high performance from poly(lactic acid) and surface-modified microcrystalline cellulose. J Mater Chem 22(31):15732–15739

    Article  CAS  Google Scholar 

  • Yamanaka S, Watanabe K, Kitamura N, Iguchi M, Mitsuhashi S, Nishi Y, Uryu M (1989) The structure and mechanical properties of sheets prepared from bacterial cellulose. J Mater Sci 24(9):3141–3145

    Article  CAS  Google Scholar 

  • Yang Q, Lue A, Zhang L (2010) Reinforcement of ramie fibers on regenerated cellulose films. Compos Sci Technol 70(16):2319–2324

    Article  CAS  Google Scholar 

  • Yang H-S, Gardner DJ, Nader JW (2011) Dispersion evaluation of microcrystalline cellulose/cellulose nanofibril-filled polypropylene composites using thermogravimetric analysis. J Therm Anal Calorim 103(3):1007–1015

    Article  CAS  Google Scholar 

  • Yang J, Han C-R, Duan J-F, Ma M-G, Zhang X-M, Xu F, Sun R-C, Xie X-M (2012) Studies on the properties and formation mechanism of flexible nanocomposite hydrogels from cellulose nanocrystals and poly(acrylic acid). J Mater Chem 22(42):22467–22480

    Article  CAS  Google Scholar 

  • Yang J, Han C-R, Duan J-F, Ma M-G, Zhang X-M, Xu F, Sun R-C (2013) Synthesis and characterization of mechanically flexible and tough cellulose nanocrystals-polyacrylamide nanocomposite hydrogels. Cellulose 20(1):227–237

    Article  CAS  Google Scholar 

  • Yano H, Sugiyama J, Nakagaito AN, Nogi M, Matsuura T, Hikita M, Handa K (2005) Optically transparent composites reinforced with networks of bacterial nanofibers. Adv Mater 17(2):153–155

    Article  CAS  Google Scholar 

  • Young Christopher R, Koleng John J, McGinity James W (2002) Production of spherical pellets by a hot-melt extrusion and spheronization process. Int J Pharm 242(1–2):87–92

    Article  CAS  Google Scholar 

  • Yousefi H, Faezipour M, Nishino T, Shakeri A, Ebrahimi G (2011a) All-cellulose composite and nanocomposite made from partially dissolved micro- and nanofibers of canola straw. Polym J 43(6):559–564

    Article  CAS  Google Scholar 

  • Yousefi H, Nishino T, Faezipour M, Ebrahimi G, Shakeri A (2011b) Direct fabrication of all-cellulose nanocomposite from cellulose microfibers using ionic liquid-based nanowelding. Biomacromolecules 12(11):4080–4085

    Article  CAS  Google Scholar 

  • Yuan H, Nishiyama Y, Wada M, Kuga S (2006) Surface acylation of cellulose whiskers by drying aqueous emulsion. Biomacromolecules 7(3):696–700

    Article  CAS  Google Scholar 

  • Yuan Q, Wu D, Gotama J, Bateman S (2008) Wood fiber reinforced polyethylene and polypropylene composites with high modulus and impact strength. J Thermoplast Compos Mater 21(3):195–208

    Article  CAS  Google Scholar 

  • Zarate CN, Aranguren MI, Reboredo MM (2008) Thermal degradation of a phenolic resin, vegetable fibers, and derived composites. J Appl Polym Sci 107(5):2977–2985

    Article  CAS  Google Scholar 

  • Zeronian SH (1991) The mechanical properties of cotton fibers. J Appl Polym Sci: Appl Polym Symp 47:445–461

    Article  CAS  Google Scholar 

  • Zeronian SH, Kawabata H, Alger KW (1990) Factors affecting the tensile properties of nonmercerized and mercerized cotton fibers. Text Res J 60(3):179–183

    Article  CAS  Google Scholar 

  • Zhang X, Shen J, Yang H, Lin Z, Tan S (2011) Mechanical properties, morphology, thermal performance, crystallization behavior, and kinetics of PP/microcrystal cellulose composites compatibilized by two different compatibilizers. J Thermoplast Compos Mater 24(6):735–754

    Article  CAS  Google Scholar 

  • Zhao Q, Yam RM, Zhang B, Yang Y, Cheng X, Li RY (2009) Novel all-cellulose ecocomposites prepared in ionic liquids. Cellulose 16(2):217–226

    Article  CAS  Google Scholar 

  • Zhou Y, Pervin F, Rangari VK, Jeelani S (2006) Fabrication and evaluation of carbon nanofiber filled carbon/epoxy composite. Mater Sci Eng, A 426(1–2):221–228

    Google Scholar 

  • Zhou C, Chu R, Wu R, Wu Q (2011a) Electrospun polyethylene oxide/cellulose nanocrystal composite nanofibrous mats with homogeneous and heterogeneous microstructures. Biomacromolecules 12(7):2617–2625

    Article  CAS  Google Scholar 

  • Zhou C, Wu Q, Yue Y, Zhang Q (2011b) Application of rod-shaped cellulose nanocrystals in polyacrylamide hydrogels. J Colloid Interface Sci 353(1):116–123

    Article  CAS  Google Scholar 

  • Zimmerman JM, Losure NS (1998) Mechanical properties of kenaf bast fiber reinforced epoxy matrix composite panels. J Adv Mater 30(2):32–38

    CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge financial support from Natural Resources Canada under the Tranformative Technology program, and critical commentary on this review by Dr Richard Berry, Mr Thanh Trung and the anonymous reviewers of this journal.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wadood Y. Hamad.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miao, C., Hamad, W.Y. Cellulose reinforced polymer composites and nanocomposites: a critical review. Cellulose 20, 2221–2262 (2013). https://doi.org/10.1007/s10570-013-0007-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-013-0007-3

Keywords

Navigation