Skip to main content
Log in

Estimation of the surface sulfur content of cellulose nanocrystals prepared by sulfuric acid hydrolysis

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

ABSTRACT

The conditions required for the accurate measurement of the sulfur content of cellulose nanocrystals (CNCs) by conductometric titration are discussed. CNCs from sulfuric acid hydrolysis are electrostatically stabilized in aqueous suspension due to the introduction of charged sulfate ester groups onto the surface of the crystallites during reaction. The sulfur content thus largely reflects the surface charge of the crystals, and is crucial to the characterization and understanding of material properties. Conductometric titration is commonly used to quantify the sulfur content of CNCs, however, the exhaustive removal of free acid by dialysis and the necessity, type, quantity and duration of ion-exchange resin treatments are not always consistent. Here we explore the standard conditions of dialysis, ion-exchange, and the reproducibility of titration results. Extensive dialysis is found to be effective in the removal of free acid, but similar results are also achieved in shorter times and with less water using membrane ultrafiltration. It is also shown that the conditions of ion-exchange most commonly employed in the literature can lead to inaccurate sulfur contents. Finally, good agreement is obtained between the sulfur contents of different CNC batches prepared using the same hydrolysis conditions, and from titration and elemental analysis when thoroughly purified, well-dispersed samples, and appropriate resin conditions are used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Araki J, Wada M, Kuga S, Okano T (1998) Flow properties of microcrystalline cellulose suspension prepared by acid treatment of native cellulose. Colloids Surf A 142(1):75–82

    Article  CAS  Google Scholar 

  • Araki J, Wada M, Kuga S (2000) Steric stabilization of a cellulose microcrystal suspension by poly(ethylene glycol) grafting. Langmuir 17(1):21–27

    Article  Google Scholar 

  • Beck S, Bouchard J, Berry R (2011) Controlling the reflection wavelength of iridescent solid films of nanocrystalline cellulose. Biomacromolecules 12(1):167–172

    Article  CAS  Google Scholar 

  • Beck S, Bouchard J, Berry R (2012) Dispersibility in water of dried nanocrystalline cellulose. Biomacromolecules 13(5):1486–1494

    Article  CAS  Google Scholar 

  • Beck-Candanedo S, Roman M, Gray DG (2005) Effect of reaction conditions on the properties and behavior of wood cellulose nanocrystal suspensions. Biomacromolecules 6(2):1048–1054

    Article  CAS  Google Scholar 

  • Dong XM, Gray DG (1997) Effect of counterions in ordered phase formation in suspensions of charged rodlike cellulose crystallites. Langmuir 13:2404–2409

    Article  CAS  Google Scholar 

  • Dong XM, Revol JF, Gray DG (1998) Effect of microcrystallite preparation conditions on the formation of colloid crystals of cellulose. Cellulose 5(1):19–32

    Article  CAS  Google Scholar 

  • Edgar CD, Gray DG (2003) Smooth model cellulose I surfaces from nanocrystal suspensions. Cellulose 10(4):299–306

    Article  CAS  Google Scholar 

  • Eichhorn SJ (2011) Cellulose nanowhiskers: promising materials for advanced applications. Soft Matter 7(2):303–315

    Article  CAS  Google Scholar 

  • Eichhorn SJ, Dufresne A, Aranguren M, Marcovich NE, Capadona JR, Rowan SJ, Weder C, Thielemans W, Roman M, Renneckar S, Gindl W, Veigel S, Keckes J, Yano H, Abe K, Nogi M, Nakagaito AN, Mangalam A, Simonsen J, Benight AS, Bismarck A, Berglund LA, Peijs T (2010) Review: current international research into cellulose nanofibres and nanocomposites. J Mater Sci 45(1):1–33

    Article  CAS  Google Scholar 

  • Elazzouzi-Hafraoui S, Nishiyama Y, Putaux JL, Heux L, Dubreuil F, Rochas C (2008) The shape and size distribution of crystalline nanoparticles prepared by acid hydrolysis of native cellulose. Biomacromolecules 9(1):57–65

    Article  CAS  Google Scholar 

  • Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-aseembly and applications. Chem Rev 110:3479–3500

    Article  CAS  Google Scholar 

  • Holt BL, Stoyanov SD, Pelan E, Paunov VN (2010) Novel anisotropic materials from functionalised colloidal cellulose and cellulose derivatives. J Mater Chem 20(45):10058–10070

    Article  CAS  Google Scholar 

  • Jiang F, Esker AR, Roman M (2010) Acid-catalyzed and solvolytic desulfation of H(2)SO(4)-hydrolyzed cellulose nanocrystals. Langmuir 26(23):17919–17925

    Article  CAS  Google Scholar 

  • Klemm D, Kramer F, Moritz S, Lindstrom T, Ankerfors M, Gray D, Dorris A (2011) Nanocelluloses: a new family of nature-based materials. Angewandte Chemie Int Ed 50(24):5438–5466

    Article  CAS  Google Scholar 

  • Kloser E, Gray DG (2010) Surface grafting of cellulose nanocrystals with poly(ethylene oxide) in aqueous media. Langmuir 26(16):13450–13456

    Article  CAS  Google Scholar 

  • Leung ACW, Hrapovic S, Lam E, Liu Y, Male KB, Mahmoud KA, Luong JHT (2011) Characteristics and properties of carboxylated cellulose nanocrystals prepared from a novel one-step procedure. Small 7(3):302–305

    Article  CAS  Google Scholar 

  • Majoinen J, Walther A, McKee JR, Kontturi E, Aseyev V, Malho JM, Ruokolainen J, Ikkala O (2011) Polyelectrolyte brushes grafted from cellulose nanocrystals using cu-mediated surface-initiated controlled radical polymerization. Biomacromolecules 12(8):2997–3006

    Article  CAS  Google Scholar 

  • Majoinen J, Kontturi E, Ikkala O, Gray D (2012) SEM imaging of chiral nematic films cast from cellulose nanocrystal suspensions. Cellulose 19(5):1599–1605

    Article  CAS  Google Scholar 

  • Rånby BG (1949) Aqueous colloidal solutions of cellulose micelles. Acta Chem Scand 3(5):649–650

    Article  Google Scholar 

  • Revol J-F, Bradford H, Giasson J, Marchessault RH, Gray DG (1992) Helicoidal self-ordering of cellulose microfibrils in aqueous suspension. Int J Biol Macromol 14:170–172

    Article  CAS  Google Scholar 

  • Revol JF, Godbout L, Dong XM, Gray DG (1994) Chiral nematic suspensions of cellulose crystallites; phase separation and magnetic field orientation. Liq Cryst 16(1):127–134

    Article  CAS  Google Scholar 

  • Roman M, Gray DG (2005) Parabolic focal conics in self-assembled solid films of cellulose nanocrystals. Langmuir 21(12):5555–5561

    Article  CAS  Google Scholar 

  • Rusli R, Shanmuganathan K, Rowan SJ, Weder C, Eichhorn SJ (2011) Stress transfer in cellulose nanowhisker composites—influence of whisker aspect ratio and surface charge. Biomacromolecules 12(4):1363–1369

    Article  CAS  Google Scholar 

  • Saito T, Kimura S, Nishiyama Y, Isogai A (2007) Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose. Biomacromolecules 8(8):2485–2491

    Article  CAS  Google Scholar 

  • Salajkovà M, Berglund LA, Zhou Q (2012) Hydrophobic cellulose nanocrystals modified with quaternary ammonium salts. J Mater Chem 22(37):19798–19805

    Article  Google Scholar 

  • Samir MASA, Alloin F, Dufresne A (2005) Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromolecules 6(2):612–626

    Article  CAS  Google Scholar 

  • Sebe G, Ham-Pichavant F, Ibarboure E, Koffi ALC, Tingaut P (2012) Supramolecular structure characterization of cellulose II nanowhiskers produced by acid hydrolysis of cellulose I substrates. Biomacromolecules 13(2):570–578

    Article  CAS  Google Scholar 

  • Siqueira G, Bras J, Dufresne A (2010) Cellulosic bionanocomposites: a review of preparation, properties and applications. Polymers 2:728–765

    Article  CAS  Google Scholar 

  • Urena-Benavides EE, Ao GY, Davis VA, Kitchens CL (2011) Rheology and phase behavior of lyotropic cellulose nanocrystal suspensions. Macromolecules 44(22):8990–8998

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Drs. X.D. Liu, L. Mongeon and M. Bostina of the Facility for Electron Microscopy (FEMR) McGill for TEM imaging and insight, M. Ramkaran for AFM expertise, and Drs. S. Beck, E. Gonzalez-Labrada and J.M. Berry for helpful discussion. The support of NSERC and FPInnovations is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Derek G. Gray.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abitbol, T., Kloser, E. & Gray, D.G. Estimation of the surface sulfur content of cellulose nanocrystals prepared by sulfuric acid hydrolysis. Cellulose 20, 785–794 (2013). https://doi.org/10.1007/s10570-013-9871-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-013-9871-0

Keywords

Navigation