Skip to main content
Log in

Surface modification of cotton nanocrystals with a silane agent

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

The research herewith aims at obtaining cellulose nanocrystals with a reduced hydrophilic surface character using a silane with isocyanate groups (isocyanatepropyltriethoxysilane), which are very reactive to hydroxyl groups and thus, are readily able to react with the low quantity of free hydroxyl groups present in the cellulose nanocrystal surfaces, therefore, promoting surface modification. Cellulose nanocrystals were obtained by hydrochloric acid hydrolysis of cotton fiber and were characterized by X-ray diffraction, Fourier transform infrared spectroscopy (FTIR) and solid state 29Si nuclear magnetic resonance (NMR) and their morphologies were investigated by scanning and transmission electron microscopy techniques. The nanocrystals presented a needle-like geometry with a 10 nm approximate diameter and a 166 nm average length. FTIR, 29Si NMR and silicon mapping images showed that nanocrystal surface chemical modification was successfully achieved. Also, the results confirm that the chemical modification occurred mainly at the nanocrystal surface, keeping the morphological integrity of the nanocrystals. The applied methodology for surface modification of the cellulose nanocrystals provided nanofillers with more appropriate surface characteristics that allow the dispersion in polymeric matrices and the adhesion at filler-matrix interface to be obtained. This may result in a better performance of these nanocrystals as reinforcing agents of hydrophobic polymer matrices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Alloin F, D’Aprea A, Kissi NE, Dufresne A, Bossard F (2010) Nanocomposite polymer electrolyte based on whisker or microfibrils polyoxyethylene nanocomposites. Eletrochimica Acta 55:5186–5194

    Article  CAS  Google Scholar 

  • Araki J, Wada M, Kuga S, Okano T (1998) Flow properties of microcrystalline cellulose suspensions prepared by acid treatments of native cellulose. Colloids Surf A 142:75–82

    Article  CAS  Google Scholar 

  • Araki J, Wada M, Kuga S (2001) Steric stabilization of a cellulose microcrystal suspension by poly(ethylene glycol) grafting. Langmuir 17:21–27

    Article  CAS  Google Scholar 

  • Azizi-Samir MAS, Alloin F, Dufresne A (2005) Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromolecules 6:612–626

    Article  Google Scholar 

  • Bellamy LJ (1966) The infrared spectra of complex molecules. Wiley, New York

    Google Scholar 

  • Bondeson D, Mathew A, Oksman K (2006) Optimization of the isolation of nanocrystals from microcristalline cellulose by acid hydrolysis. Cellulose 13:171–180

    Article  CAS  Google Scholar 

  • Braun B, Dorgan JR (2009) Single-step method for the isolation and surface functionalization of cellulosic nanowhiskers. Biomacromolecules 10:334–341

    Article  CAS  Google Scholar 

  • Candanedo SB, Roman M, Gray DG (2005) Effect of reaction conditions on the properties and behavior of wood cellulose nanocrystal suspensions. Biomacromolecules 6:1048–1054

    Article  Google Scholar 

  • Favier V, Canova GR, Cavaille JY, Chanzy H, Dufresne A, Gauthier C (1995a) Nanocomposite materials from latex and cellulose whiskers. Polym Adv Technol 6:351–355

    Article  CAS  Google Scholar 

  • Favier V, Cavaille JY, Chanzy H (1995b) Polymer nanocomposites reinforced by cellulose whiskers. Macromolecules 28:6365–6367

    Article  CAS  Google Scholar 

  • Goffin A-L, Raquez J-M, Duquesne E, Siqueira G, Habibi Y, Dufresne A, Dubois Ph (2011) Poly(ε-caprolactone) based nanocomposites reinforced by surface-grafted cellulose nanowhiskers via extrusion processing: morphology, rheology and thermal-mechanical properties. Polymer 52:1532–1538

    Article  CAS  Google Scholar 

  • Goussé C, Chancy H, Excoffier G, Soubeyrand L, Fleury E (2002) Stable suspensions of partially silylated cellulose whiskers dispersed in organic solvents. Polymer 43:2645–2651

    Article  Google Scholar 

  • Grunert M, Winter W (2002) Nanocomposites of cellulose acetate butyrate reinforced with cellulose nanocrystals. J Polym Environ 10:27–30

    Article  CAS  Google Scholar 

  • Habibi Y, Lucia L, Rojas O (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110:3479–3500

    Article  CAS  Google Scholar 

  • Hossain KMZ, Ahmed I, Parsons AJ, Scotchford CA, Walker GS, Thielemans W, Rudd CD (2012) Physico-chemical and mechanical properties of nanocomposites prepared using cellulose nanowhiskers and poly(lactic acid). J Mater Sci 47:2675–2686

    Article  CAS  Google Scholar 

  • Isogai A, Usuda M, Kato T, Uryu T, Atalla RH (1989) High-resolution images of defects in liquid crystalline polymers in the smectic and crystalline phases. Macromolecules 22:168–173

    Article  Google Scholar 

  • Kim J, Montero G, Habibi Y (2009) Dispersion of cellulose crystallites by nonionic surfactants in a hydrophobic polymer matrix. Polym Eng Sci 49:2054–2061

    Article  CAS  Google Scholar 

  • Klemm D, Heublein B, Fink HP, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed Engl 44:3358–3393

    Article  CAS  Google Scholar 

  • Lima MMS, Borsali R (2004) Rodlike cellulose microcrystals: structure, properties and applications. Macromol Rapid Commun 25:771–787

    Article  Google Scholar 

  • Lin N, Chen G, Huang J, Dufresne A, Chang PR (2009) Effects of polymer-grafted natural nanocrystals on the structure and mechanical properties of poly(lactic acid): a case of cellulose whisker-graft-polycaprolactone. J Appl Polym Sci 113:3417–3425

    Article  CAS  Google Scholar 

  • Mabrouk AB, Kaddami H, Magnin A, Belgacem MN, Dufresne A, Boufi S (2011) Preparation of nanocomposite dispersions based on cellulose whiskers and acrylic copolymer by miniemulsion polymerization: effect of the silane content. Polym Eng Sci 51:62–70

    Article  Google Scholar 

  • Martins MA, Teixeira EM, Corrêa AC, Ferreira M, Mattoso LHC (2011) Extraction and characterization of cellulose whiskers from commercial cotton fibers. J Mater Sci 46:7858–7864

    Article  CAS  Google Scholar 

  • Menezes AJ, Siqueira G, Curvelo ASA, Dufresne A (2009) Extrusion and characterization of functionalized cellulose whiskers reinforced polyethylene nanocomposites. Polymer 50:4552–4563

    Article  Google Scholar 

  • Miranda R, Sosa-Blanco C, Bustos-Martinez D, Vasile C (2007) Pyrolysis of textile wastes. I. Kinetics and yields. J Anal Appl Pyrolysis 80:489–495

    Article  CAS  Google Scholar 

  • Ning L, Jin H, Peter CR (2011) Surface acetylation of cellulose nanocrystal and its reinforcing function in poly(lactic acid). Carbohydr Polym 83:1834–1842

    Article  Google Scholar 

  • Peltonen L, Hirvonen J (2010) Pharmaceutical nanocrystals by nanomilling: critical process parameters, particle featuring and stabilization methods. J Pharm Pharmacol 62:1569–1579

    Article  CAS  Google Scholar 

  • Petersson L, Kvien I, Oksman K (2007) Structure and thermal properties of poly(lactic acid)/cellulose whiskers nanocomposites materials. Comp Sci Tech 67:2535–2544

    Article  CAS  Google Scholar 

  • Ränby BG (1951) Fibrous macromolecular systems. Cellulose and muscle. The colloidal properties of cellulose micelles. Discuss Faraday Soc 11:158–164

    Article  Google Scholar 

  • Sassi J, Chanzy H (1995) Ultrastructural aspects of the acetylation of cellulose. Cellulose 2:111–127

    Article  CAS  Google Scholar 

  • Silva CG, Benaducci D, Frollini E (2011) Lyocell and cotton fibers as reinforcements for a thermoset polymer. BioResources 7:78–98

    Google Scholar 

  • Siqueira G, Bras J, Dufresne A (2009) Cellulose whiskers versus microfibrils: influence of the nature of the nanoparticle and its surface functionalization on the thermal and mechanical properties of nanocomposites. Biomacromolecules 10:425–432

    Article  CAS  Google Scholar 

  • Teixeira EM, Corrêa AC, Manzoli A, Leite FL, Oliveira CR, Mattoso LHC (2010) Cellulose nanofibers from White and naturally colored cotton fibers. Cellulose 17:595–606

    Article  CAS  Google Scholar 

  • Thygesen A, Oddershede J, Lilhot H, Thomsen AB, Stahl K (2005) On the determination of crystallinity and cellulose content in plant fibers. Cellulose 12:563–576

    Article  CAS  Google Scholar 

  • Wakelyn PJ, Bertoniere NR, Thibodeaux DP (2006) Cotton fiber chemistry and technology. CRC Press Inc, Boca Raton

    Book  Google Scholar 

  • Xie K, Yu Y, Shi Y (2009) Synthesis and characterization of cellulose/silica hybrid materials with chemical crosslinking. Carbohydr Polym 78:799–805

    Article  CAS  Google Scholar 

  • Xie Y, Hill CAS, Xiao Z, Militz H, Mai C (2010) Silane coupling agents used for natural fiber/polymer composites: a review. Comp Part A 41:806–819

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) (Brazil) through Inomat, National Institute (INCT) for Complex Functional Materials. The authors particularly thank Dr. Carlos Alberto Paula Leite for his cooperation in the ESI-TEM analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria do Carmo Gonçalves.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Oliveira Taipina, M., Ferrarezi, M.M.F., Yoshida, I.V.P. et al. Surface modification of cotton nanocrystals with a silane agent. Cellulose 20, 217–226 (2013). https://doi.org/10.1007/s10570-012-9820-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-012-9820-3

Keywords

Navigation