Skip to main content
Log in

Novel all-cellulose ecocomposites prepared in ionic liquids

  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

In this study, a kind of novel all-cellulose ecocomposites based on cellulose and rice husk (RH) has been prepared by using green solvent, ionic liquid (IL), as processing medium. Due to the presence of the RH, these ecocomposites also contain an inorganic component, silica. The content and distribution of the silica in the ecocomposite have been investigated by energy dispersive X-ray (EDX) and X-ray photoelectron spectroscopy (XPS) analyses. The mechanical properties of these ecocomposites, including both static and dynamic, have been determined by using tensile test and dynamic mechanical analysis (DMA), respectively. The effect of processing conditions on the interfacial bonding and therefore the mechanical performance of the final ecocomposites has been investigated further. Results show that the incorporation of the RH can provide stiffening effect for cellulose matrix, and the pretreatment of RH fillers by IL can enhance the filler/matrix interfacial bonding, thus further improving the mechanical performance of the ecocomposite. By selecting suitable composition ratios and processing conditions optimal mechanical performance with the balance among stiffness, strength and elongation at break can be obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bansal V, Ahmad A, Sastry M (2006) Fungus-mediated biotransformation of amorphous silica in rice husk to nanocrystalline silica. J Am Chem Soc 128:14059–14066. doi:10.1021/ja062113+

    Article  CAS  Google Scholar 

  • Bhardwaj R, Mohanty AK, Drzal LT, Pourboghrat F, Misra M (2006) Renewable resource-based green composites from recycled cellulose fiber and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) bioplastic. Biomacromolecules 7:2044–2051. doi:10.1021/bm050897y

    Article  CAS  Google Scholar 

  • Egusa S, Kitaoka T, Goto M, Wariishi H (2007) Synthesis of cellulose in vitro by using a cellulase/surfactant complex in a nonaqueous medium. Angew Chem Int Ed 46:2063–2065. doi:10.1002/anie.200603981

    Article  CAS  Google Scholar 

  • El Seoud OA, Koschella A, Fidale LC, Dorn S, Heinze T (2007) Applications of ionic liquids in carbohydrate chemistry: a window of opportunities. Biomacromolecules 8:2629–2647. doi:10.1021/bm070062i

    Article  CAS  Google Scholar 

  • Gandini A, Curvelo AAS, Pasquini D, de Menezes AJ (2005) Direct transformation of cellulose fibers into self-reinforced composites by partial oxypropylation. Polymer (Guildf) 46:10611–10613. doi:10.1016/j.polymer.2005.09.004

    Article  CAS  Google Scholar 

  • Gindl W, Keckes J (2005) All-cellulose nanocomposite. Polymer (Guildf) 46:10221–10225. doi:10.1016/j.polymer.2005.08.040

    Article  CAS  Google Scholar 

  • Gindl W, Keckes J (2007) Drawing of self-reinforced cellulose films. J Appl Polym Sci 103:2703–2708. doi:10.1002/app.25434

    Article  CAS  Google Scholar 

  • Gindl W, Martinschitz KJ, Boesecke P, Keckes J (2006) Structural changes during tensile testing of an all-cellulose composite by in situ synchrotron X-ray diffraction. Compos Sci Technol 66:2639–2647. doi:10.1016/j.compscitech.2006.03.020

    Article  CAS  Google Scholar 

  • Guo Y, Yang S, Yu K, Zhao J, Wang Z, Xu H (2002) The preparation and mechanism studies of rice husk based porous carbon. Mater Chem Phys 74:320–323. doi:10.1016/S0254-0584(01)00473-4

    Article  CAS  Google Scholar 

  • Heinze T, Dicke R, Koschella A, Kull AH, Klohr EA, Koch W (2000) Effective preparation of cellulose derivatives in a new simple cellulose solvent. Macromol Chem Phys 201:627–631. doi:10.1002/(SICI)1521-3935(20000301)201:6<627::AID-MACP627>3.0.CO;2-Y

    Article  CAS  Google Scholar 

  • Heinze T, Schwikal K, Barthel S (2005) Ionic liquids as reaction medium in cellulose functionalization. Macromol Biosci 5:520–525. doi:10.1002/mabi.200500039

    Article  CAS  Google Scholar 

  • Jacopian V, Paul D, Philipp B, Menninger H, Voigt G (1980) Morphological studies on silicon distribution in wheat straw before and after alkali treatment. Cell Chem Technol 14:37–51

    CAS  Google Scholar 

  • Juliano BO (1985) Rice: chemistry and technology, 2nd edn. The American association of cereal chemists, Inc., St. Paul, Minnesota, USA, 695 pp

    Google Scholar 

  • Kennedy LJ, Vijaya JJ, Sekaran G (2004) Effect of two-stage process on the preparation and characterization of porous carbon composite from rice husk by phosphoric acid activation. Ind Eng Chem Res 43:1832–1838. doi:10.1021/ie034093f

    Article  CAS  Google Scholar 

  • Kilpeläinen I, Xie H, King A, Granstrom M, Heikkinen S, Argyropoulos DS (2007) Dissolution of wood in ionic liquid. J Agric Food Chem 55:9142–9148. doi:10.1021/jf071692e

    Article  Google Scholar 

  • Kim HS, Yang HS, Kim HJ, Park HJ (2004) Thermogravimetric analysis of rice husk flour filled thermoplastic polymer composites. J Therm Anal Cal 76:395–404. doi:10.1023/B:JTAN.0000028019.88096.e3

    Article  CAS  Google Scholar 

  • Kim HS, Yang HS, Kim HJ (2005) Biodegradability and mechanical properties of agro-flour-filled polybutylene succinate biocomposites. J Appl Polym Sci 97:1513–1521. doi:10.1002/app.21905

    Article  CAS  Google Scholar 

  • Klemm D, Philipp B, Heinze T, Heinze U, Wagenknecht W (1998) Comprehensive cellulose chemistry, vol 1, fundamentals and analytical methods. Wiley-VCH, Weinheim, Germany, pp 1–7

    Google Scholar 

  • Köhler S, Heinze T (2007) New solvents for cellulose: dimethyl sulfoxide/ammonium fluorides. Macromol Biosci 7:307–314. doi:10.1002/mabi.200600197

    Article  Google Scholar 

  • Liou TH (2004) Preparation and characterization of nano-structured silica from rice husk. Mater Sci Eng A 364:313–323. doi:10.1016/j.msea.2003.08.045

    Article  Google Scholar 

  • Liu CF, Sun RC, Zhang AP, Qin MH, Ren JL, Wang XA (2007) Preparation and characterization of phthalated cellulose derivatives in room-temperature ionic liquid without catalysts. J Agric Food Chem 55:2399–2406. doi:10.1021/jf062876g

    Article  CAS  Google Scholar 

  • Lu X, Zhang MQ, Rong MZ, Shi G, Yang GC (2002) All-plant fiber composites I: unidirectional sisal fiber reinforced benzylated wood. Polym Compos 23:624–633. doi:10.1002/pc.10462

    Article  CAS  Google Scholar 

  • Lu X, Zhang MQ, Rong MZ, Yue DL, Yang GC (2004) Environmental degradability of self-reinforced composites made from sisal. Compos Sci Technol 64:1301–1310. doi:10.1016/j.compscitech.2003.10.013

    Article  CAS  Google Scholar 

  • Moulthrop JS, Swatloski RP, Moyna G, Rogers RD (2005) High-resolution 13C NMR studies of cellulose and cellulose oligomers in ionic liquid solutions. Chem Commun (Camb) 1557–1559. doi:10.1039/b417745b

  • Nelson ML, O’Connor RT (1964) Relation of certain infrared bands to cellulose crystallinity and crystal lattice type. Part II. A new infrared ratio for estimation of crystallinity in cellulose I and II. J Appl Polym Sci 8:1325–1341. doi:10.1002/app.1964.070080323

    Article  CAS  Google Scholar 

  • Nishino T, Arimoto N (2007) All-cellulose composite prepared by selective dissolving of fiber surface. Biomacromolecules 8:2712–2716. doi:10.1021/bm0703416

    Article  CAS  Google Scholar 

  • Nishino T, Matsuda I, Hirao K (2004) All-cellulose composite. Macromolecules 37:7683–7687. doi:10.1021/ma049300h

    Article  CAS  Google Scholar 

  • Park BD, Wi SG, Lee KH, Singh AP, Yoon TH, Kim YS (2003) Characterization of anatomical features and silica distribution in rice husk using microscopic and micro-analytical techniques. Biomass Bioenergy 25:319–327. doi:10.1016/S0961-9534(03)00014-X

    Article  CAS  Google Scholar 

  • Ryu AE, Kim TN (1997) Pulverization of rice husks and the changes of husk densities. J Mater Sci 32:6639–6643. doi:10.1023/A:1018600403263

    Article  CAS  Google Scholar 

  • Saheb DN, Jog JP (1999) Natural fiber polymer composites: a review. Adv Polym Technol 18:351–363. doi:10.1002/(SICI)1098-2329(199924)18:4<351::AID-ADV6>3.0.CO;2-X

    Article  CAS  Google Scholar 

  • Seavey KC, Ghosh I, Davis RM, Glasser WG (2001) Continuous cellulose fiber-reinforced cellulose ester composites. I. Manufacturing options. Cellulose 8:149–159. doi:10.1023/A:1016713131851

    Article  CAS  Google Scholar 

  • Sun L, Gong K (2001) Silicon-based materials from rice husks and their applications. Ind Eng Chem Res 40:5861–5877. doi:10.1021/ie010284b

    Article  CAS  Google Scholar 

  • Swatloski RP, Spear SK, Holbrey JD, Rogers RD (2002) Dissolution of cellulose with ionic liquids. J Am Chem Soc 124:4974–4975. doi:10.1021/ja025790m

    Article  CAS  Google Scholar 

  • Turbak A, El-Kafrawy A, Snyder F, Auerbach A (1981) Solvent system for cellulose. US Patent 4302252

  • Turi EA (1997) Thermal characterization of polymeric materials, 2nd edn. Elsevier Science & Technology Books, New York

    Google Scholar 

  • Wu Q, Henriksson M, Liu X, Berglund LA (2007) A high strength nanocomposite based on microcrystalline cellulose and polyurethane. Biomacromolecules 8:3687–3692. doi:10.1021/bm701061t

    Article  CAS  Google Scholar 

  • Zhang L, Ruan D, Zhou J (2001) Structure and properties of regenerated cellulose films prepared from cotton linters in NaOH/urea aqueous solution. Ind Eng Chem Res 40:5923–5928. doi:10.1021/ie0010417

    Article  CAS  Google Scholar 

  • Zhang H, Wu J, Zhang J, He J (2005) 1-Allyl-3-methylimidazolium chloride room temperature ionic liquid: a new and powerful nonderivatizing solvent for cellulose. Macromolecules 38:8272–8277. doi:10.1021/ma0505676

    Article  CAS  Google Scholar 

  • Zhao Q, Tao J, Yam RCM, Mok ACK, Li RKY, Song CJ (2008) Biodegradation behavior of polycaprolactone/rice husk ecocomposites in simulated soil medium. Polym Degrad Stab 93:1571–1576. doi:10.1016/j.polymdegradstab.2008.05.002

    Article  CAS  Google Scholar 

  • Zhu S, Wu Y, Chen Q, Yu Z, Wang C, Jin S et al (2006) Dissolution of cellulose with ionic liquids and its application: a mini-review. Green Chem 8:325–327. doi:10.1039/b601395c

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by a grant from the City University of Hong Kong (Project No. ARG 9667009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert K. Y. Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, Q., Yam, R.C.M., Zhang, B. et al. Novel all-cellulose ecocomposites prepared in ionic liquids. Cellulose 16, 217–226 (2009). https://doi.org/10.1007/s10570-008-9251-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-008-9251-3

Keywords

Navigation