Skip to main content
Log in

Improvement of NADPH bioavailability in Escherichia coli by replacing NAD+-dependent glyceraldehyde-3-phosphate dehydrogenase GapA with NADP+-dependent GapB from Bacillus subtilis and addition of NAD kinase

  • Metabolic Engineering and Synthetic Biology
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

Enzymatic synthesis of some industrially important compounds depends heavily on cofactor NADPH as the reducing agent. This is especially true in the synthesis of chiral compounds that are often used as pharmaceutical intermediates to generate the correct stereochemistry in bioactive products. The high cost and technical difficulty of cofactor regeneration often pose a challenge for such biocatalytic reactions. In this study, to increase NADPH bioavailability, the native NAD+-dependent glyceraldehyde-3-phosphate dehydrogenase (GAPDH) gapA gene in Escherichia coli was replaced with a NADP+-dependent gapB from Bacillus subtilis. To overcome the limitation of NADP+ availability, E. coli NAD kinase, nadK was also coexpressed with gapB. The recombinant strains were then tested in three reporting systems: biosynthesis of lycopene, oxidation of cyclohexanone with cyclohexanone monooxygenase (CHMO), and an anaerobic system utilizing 2-haloacrylate reductase (CAA43). In all the reporting systems, replacing NAD+-dependent GapA activity with NADP+-dependent GapB activity increased the synthesis of NADPH-dependent compounds. The increase was more pronounced when NAD kinase was also overexpressed in the case of the one-step reaction catalyzed by CAA43 which approximately doubled the product yield. These results validate this novel approach to improve NADPH bioavailability in E. coli and suggest that the strategy can be applied in E. coli or other bacterium-based production of NADPH-dependent compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Alper H, Fischer C, Nevoigt E, Stephanopoulos G (2005) Tuning genetic control through promoter engineering. Proc Natl Acad Sci U S A 102(36):12678–12683. doi:10.1073/pnas.0504604102

    Article  PubMed  CAS  Google Scholar 

  2. Alper H, Jin YS, Moxley JF, Stephanopoulos G (2005) Identifying gene targets for the metabolic engineering of lycopene biosynthesis in Escherichia coli. Metab Eng 7(3):155–164. doi:10.1016/j.ymben.2004.12.003

    Article  PubMed  CAS  Google Scholar 

  3. Alper H, Miyaoku K, Stephanopoulos G (2005) Construction of lycopene-overproducing E. coli strains by combining systematic and combinatorial gene knockout targets. Nat Biotechnol 23(5):612–616. doi:10.1038/nbt1083

    Article  PubMed  CAS  Google Scholar 

  4. Asanuma N, Yoshizawa K, Hino T (2009) Properties and role of glyceraldehyde-3-phosphate dehydrogenase in the control of fermentation pattern and growth in a ruminal bacterium, Streptococcus bovis. Curr Microbiol 58(4):283–287. doi:10.1007/s00284-008-9326-2

    Article  PubMed  CAS  Google Scholar 

  5. Charpentier B, Branlant C (1994) The Escherichia coli gapA gene is transcribed by the vegetative RNA polymerase holoenzyme E sigma 70 and by the heat shock RNA polymerase E sigma 32. J Bacteriol 176(3):830–839

    PubMed  CAS  Google Scholar 

  6. Chen G, Kayser MM, Mihovilovic MD, Mrstik ME, Martinez CA, Stewart JD (1999) Asymmetric oxidations at sulfur catalyzed by engineered strains that overexpress cyclohexanone monooxygenase. New J Chem 23:827–832

    Article  CAS  Google Scholar 

  7. Chen YC, Peoples OP, Walsh CT (1988) Acinetobacter cyclohexanone monooxygenase: gene cloning and sequence determination. J Bacteriol 170(2):781–789

    PubMed  CAS  Google Scholar 

  8. Chenault HK, Whitesides GM (1987) Regeneration of nicotinamide cofactors for use in organic synthesis. Appl Biochem Biotechnol 14(2):147–197

    Article  PubMed  CAS  Google Scholar 

  9. Chin JW, Cirino PC (2011) Improved NADPH supply for xylitol production by engineered Escherichia coli with glycolytic mutations. Biotechnol Prog 27(2):333–341. doi:10.1002/btpr.559

    Article  PubMed  CAS  Google Scholar 

  10. Cunningham FX Jr, Sun Z, Chamovitz D, Hirschberg J, Gantt E (1994) Molecular structure and enzymatic function of lycopene cyclase from the cyanobacterium Synechococcus sp strain PCC7942. Plant Cell 6(8):1107–1121. doi:10.1105/tpc.6.8.1107

    PubMed  CAS  Google Scholar 

  11. de Carvalho CC (2011) Enzymatic and whole cell catalysis: finding new strategies for old processes. Biotechnol Adv 29(1):75–83. doi:10.1016/j.biotechadv.2010.09.001

    Article  PubMed  Google Scholar 

  12. Donova MV, Egorova OV (2012) Microbial steroid transformations: current state and prospects. Appl Microbiol Biotechnol 94(6):1423–1447. doi:10.1007/s00253-012-4078-0

    Article  PubMed  CAS  Google Scholar 

  13. Elliott PR, Mohammad S, Melrose HJ, Moody PC (2008) Expression, purification, crystallization and preliminary X-ray analysis of an NAD-dependent glyceraldehyde-3-phosphate dehydrogenase from Helicobacter pylori. Acta Crystallogr Sect F Struct Biol Cryst Commun 64(Pt 8):727–729. doi:10.1107/S1744309108020368

    Article  PubMed  CAS  Google Scholar 

  14. Ettema TJ, Ahmed H, Geerling AC, van der Oost J, Siebers B (2008) The non-phosphorylating glyceraldehyde-3-phosphate dehydrogenase (GAPN) of Sulfolobus solfataricus: a key-enzyme of the semi-phosphorylative branch of the Entner–Doudoroff pathway. Extremophiles 12(1):75–88. doi:10.1007/s00792-007-0082-1

    Article  PubMed  CAS  Google Scholar 

  15. Farmer WR, Liao JC (2001) Precursor balancing for metabolic engineering of lycopene production in Escherichia coli. Biotechnol Prog 17(1):57–61. doi:10.1021/bp000137t

    Article  PubMed  CAS  Google Scholar 

  16. Fasan R, Crook NC, Peters MW, Meinhold P, Buelter T, Landwehr M, Cirino PC, Arnold FH (2011) Improved product-per-glucose yields in P450-dependent propane biotransformations using engineered Escherichia coli. Biotechnol Bioeng 108(3):500–510. doi:10.1002/bit.22984

    Article  PubMed  CAS  Google Scholar 

  17. Fillinger S, Boschi-Muller S, Azza S, Dervyn E, Branlant G, Aymerich S (2000) Two glyceraldehyde-3-phosphate dehydrogenases with opposite physiological roles in a nonphotosynthetic bacterium. J Biol Chem 275(19):14031–14037. doi:10.1074/jbc.275.19.14031

    Article  PubMed  CAS  Google Scholar 

  18. Ganter C, Pluckthun A (1990) Glycine to alanine substitutions in helices of glyceraldehyde-3-phosphate dehydrogenase: effects on stability. Biochemistry 29(40):9395–9402

    Article  PubMed  CAS  Google Scholar 

  19. Gschaedler A, Robas N, Boudrant J, Branlant C (1999) Effects of pulse addition of carbon sources on continuous cultivation of Escherichia coli containing a recombinant E. coli gapA gene. Biotechnol Bioeng 63(6):712–720. doi:10.1002/(SICI)1097-0290(19990620)63:6<712:AID-BIT9>3.0.CO;2-R

    Article  PubMed  CAS  Google Scholar 

  20. Guo ZP, Zhang L, Ding ZY, Shi GY (2011) Minimization of glycerol synthesis in industrial ethanol yeast without influencing its fermentation performance. Metab Eng 13(1):49–59. doi:10.1016/j.ymben.2010.11.003

    Article  PubMed  CAS  Google Scholar 

  21. Hillman JD, Fraenkel DG (1975) Glyceraldehyde 3-phosphate dehydrogenase mutants of Escherichia coli. J Bacteriol 122(3):1175–1179

    PubMed  CAS  Google Scholar 

  22. Hird FJ, Weidemann MJ (1964) Transport and metabolism of butyrate by isolated rumen epithelium. Biochem J 92(3):585–589

    PubMed  CAS  Google Scholar 

  23. Iddar A, Valverde F, Serrano A, Soukri A (2002) Expression, purification, and characterization of recombinant nonphosphorylating NADP-dependent glyceraldehyde-3-phosphate dehydrogenase from Clostridium acetobutylicum. Protein Expr Purif 25(3):519–526. doi:10.1016/S1046-5928(02)00032-3

    Article  PubMed  CAS  Google Scholar 

  24. Iddar A, Valverde F, Serrano A, Soukri A (2003) Purification of recombinant non-phosphorylating NADP-dependent glyceraldehyde-3-phosphate dehydrogenase from Streptococcus pyogenes expressed in E. coli. Mol Cell Biochem 247(1–2):195–203

    Article  PubMed  CAS  Google Scholar 

  25. Irani M, Maitra PK (1974) Isolation and characterization of Escherichia coli mutants defective in enzymes of glycolysis. Biochem Biophys Res Commun 56(1):127–133. doi:10.1016/S0006-291X(74)80324-4

    Article  PubMed  CAS  Google Scholar 

  26. Ito F, Chishiki H, Fushinobu S, Wakagi T (2012) Comparative analysis of two glyceraldehyde-3-phosphate dehydrogenases from a thermoacidophilic archaeon, Sulfolobus tokodaii. FEBS Lett 586(19):3097–3103. doi:10.1016/j.febslet.2012.07.059

    Article  PubMed  CAS  Google Scholar 

  27. Jan J, Martinez I, Wang Y, Bennett GN, San KY (2013) Metabolic engineering and transhydrogenase effects on NADPH availability in Escherichia coli. Biotechnol Prog. doi:10.1002/btpr.1765

    Google Scholar 

  28. Kabir MM, Shimizu K (2003) Fermentation characteristics and protein expression patterns in a recombinant Escherichia coli mutant lacking phosphoglucose isomerase for poly(3-hydroxybutyrate) production. Appl Microbiol Biotechnol 62(2–3):244–255. doi:10.1007/s00253-003-1257-z

    Article  PubMed  CAS  Google Scholar 

  29. Kawai S, Mori S, Mukai T, Hashimoto W, Murata K (2001) Molecular characterization of Escherichia coli NAD kinase. Eur J Biochem 268(15):4359–4365. doi:10.1046/j.1432-1327.2001.02358.x

    Article  PubMed  CAS  Google Scholar 

  30. Kim S, Lee CH, Nam SW, Kim P (2011) Alteration of reducing powers in an isogenic phosphoglucose isomerase (pgi)-disrupted Escherichia coli expressing NAD(P)-dependent malic enzymes and NADP-dependent glyceraldehyde 3-phosphate dehydrogenase. Lett Appl Microbiol 52(5):433–440. doi:10.1111/j.1472-765X.2011.03013.x

    Article  PubMed  CAS  Google Scholar 

  31. Kocharin K, Siewers V, Nielsen J (2013) Improved polyhydroxybutyrate production by Saccharomyces cerevisiae through the use of the phosphoketolase pathway. Biotechnol Bioeng 110(8):2216–2224. doi:10.1002/bit.24888

    Article  PubMed  CAS  Google Scholar 

  32. Kurata A, Fujita M, Mowafy AM, Kamachi H, Kurihara T, Esaki N (2008) Production of (S)-2-chloropropionate by asymmetric reduction of 2-chloroacrylate with 2-haloacrylate reductase coupled with glucose dehydrogenase. J Biosci Bioeng 105(4):429–431. doi:10.1263/jbb.105.429

    Article  PubMed  CAS  Google Scholar 

  33. Kurata A, Kurihara T, Kamachi H, Esaki N (2005) 2-Haloacrylate reductase, a novel enzyme of the medium chain dehydrogenase/reductase superfamily that catalyzes the reduction of a carbon–carbon double bond of unsaturated organohalogen compounds. J Biol Chem 280(21):20286–20291. doi:10.1074/jbc.M414605200

    Article  PubMed  CAS  Google Scholar 

  34. Lee DH, Kim MD, Lee WH, Kweon DH, Seo JH (2004) Consortium of fold-catalyzing proteins increases soluble expression of cyclohexanone monooxygenase in recombinant Escherichia coli. Appl Microbiol Biotechnol 63(5):549–552. doi:10.1007/s00253-003-1370-z

    Article  PubMed  CAS  Google Scholar 

  35. Lee HC, Kim JS, Jang W, Kim SY (2009) Thymidine production by overexpressing NAD+ kinase in an Escherichia coli recombinant strain. Biotechnol Lett 31(12):1929–1936. doi:10.1007/s10529-009-0097-z

    Article  PubMed  CAS  Google Scholar 

  36. Lee PC, Schmidt-Dannert C (2002) Metabolic engineering towards biotechnological production of carotenoids in microorganisms. Appl Microbiol Biotechnol 60(1–2):1–11. doi:10.1007/s00253-002-1101-x

    PubMed  CAS  Google Scholar 

  37. Lee WH, Park JB, Park K, Kim MD, Seo JH (2007) Enhanced production of epsilon-caprolactone by overexpression of NADPH-regenerating glucose 6-phosphate dehydrogenase in recombinant Escherichia coli harboring cyclohexanone monooxygenase gene. Appl Microbiol Biotechnol 76(2):329–338. doi:10.1007/s00253-007-1016-7

    Article  PubMed  CAS  Google Scholar 

  38. Lee WH, Park YC, Lee DH, Park K, Seo JH (2005) Simultaneous biocatalyst production and Baeyer–Villiger oxidation for bioconversion of cyclohexanone by recombinant Escherichia coli expressing cyclohexanone monooxygenase. Appl Biochem Biotechnol 121–124:827–836. doi:10.1385/ABAB:123:1-3:0827

    Article  PubMed  Google Scholar 

  39. Li ZJ, Cai L, Wu Q, Chen GQ (2009) Overexpression of NAD kinase in recombinant Escherichia coli harboring the phbCAB operon improves poly(3-hydroxybutyrate) production. Appl Microbiol Biotechnol 83(5):939–947. doi:10.1007/s00253-009-1943-6

    Article  PubMed  CAS  Google Scholar 

  40. Liu W, Wang P (2007) Cofactor regeneration for sustainable enzymatic biosynthesis. Biotechnol Adv 25(4):369–384. doi:10.1016/j.biotechadv.2007.03.002

    Article  PubMed  CAS  Google Scholar 

  41. Martinez I, Zhu J, Lin H, Bennett GN, San KY (2008) Replacing Escherichia coli NAD-dependent glyceraldehyde 3-phosphate dehydrogenase (GAPDH) with a NADP-dependent enzyme from Clostridium acetobutylicum facilitates NADPH dependent pathways. Metab Eng 10(6):352–359. doi:10.1016/j.ymben.2008.09.001

    Article  PubMed  CAS  Google Scholar 

  42. Matsubara K, Yokooji Y, Atomi H, Imanaka T (2011) Biochemical and genetic characterization of the three metabolic routes in Thermococcus kodakarensis linking glyceraldehyde 3-phosphate and 3-phosphoglycerate. Mol Microbiol 81(5):1300–1312. doi:10.1111/j.1365-2958.2011.07762.x

    Article  PubMed  CAS  Google Scholar 

  43. Misawa N, Shimada H (1997) Metabolic engineering for the production of carotenoids in non-carotenogenic bacteria and yeasts. J Biotechnol 59(3):169–181. doi:10.1016/S0168-1656(97)00154-5

    Article  PubMed  CAS  Google Scholar 

  44. Moreira dos Santos M, Raghevendran V, Kotter P, Olsson L, Nielsen J (2004) Manipulation of malic enzyme in Saccharomyces cerevisiae for increasing NADPH production capacity aerobically in different cellular compartments. Metab Eng 6(4):352–363. doi:10.1016/j.ymben.2004.06.002

    Article  PubMed  CAS  Google Scholar 

  45. Phillips GJ, Park SK, Huber D (2000) High copy number plasmids compatible with commonly used cloning vectors. Biotechniques 28(3):400–402, 404, 406 passim

    Google Scholar 

  46. Piattoni CV, Rius SP, Gomez-Casati DF, Guerrero SA, Iglesias AA (2010) Heterologous expression of non-phosphorylating glyceraldehyde-3-phosphate dehydrogenase from Triticum aestivum and Arabidopsis thaliana. Biochimie 92(7):909–913. doi:10.1016/j.biochi.2010.03.017

    Article  PubMed  CAS  Google Scholar 

  47. Pollak N, Niere M, Ziegler M (2007) NAD kinase levels control the NADPH concentration in human cells. J Biol Chem 282(46):33562–33571. doi:10.1074/jbc.M704442200

    Article  PubMed  CAS  Google Scholar 

  48. Reeves HC, Brehmeyer BA, Ajl SJ (1968) Multiple forms of bacterial NADP-specific isocitrate dehydrogenase. Science 162(3851):359–360

    Article  PubMed  CAS  Google Scholar 

  49. Sanchez AM, Andrews J, Hussein I, Bennett GN, San KY (2006) Effect of overexpression of a soluble pyridine nucleotide transhydrogenase (UdhA) on the production of poly(3-hydroxybutyrate) in Escherichia coli. Biotechnol Prog 22(2):420–425. doi:10.1021/bp050375u

    Article  PubMed  CAS  Google Scholar 

  50. Sandmann G, Albrecht M, Schnurr G, Knorzer O, Boger P (1999) The biotechnological potential and design of novel carotenoids by gene combination in Escherichia coli. Trends Biotechnol 17(6):233–237. doi:10.1016/S0167-7799(99)01307-4

    Article  PubMed  CAS  Google Scholar 

  51. Seta FD, Boschi-Muller S, Vignais ML, Branlant G (1997) Characterization of Escherichia coli strains with gapA and gapB genes deleted. J Bacteriol 179(16):5218–5221

    PubMed  CAS  Google Scholar 

  52. Shi F, Huan X, Wang X, Ning J (2012) Overexpression of NAD kinases improves the l-isoleucine biosynthesis in Corynebacterium glutamicum ssp. lactofermentum. Enzyme Microb Technol 51(2):73–80. doi:10.1016/j.enzmictec.2012.04.003

    Article  PubMed  CAS  Google Scholar 

  53. Stewart JD, Reed KW, Martinez CA, Zhu J, Chen G, Kayser MM (1998) Recombinant Baker’s yeast as a whole-cell catalyst for asymmetric Baeyer–Villiger oxidations. J Am Chem Soc 120(15):3541–3548. doi:10.1021/ja972942i

    Article  CAS  Google Scholar 

  54. Stewart JD, Reed KW, Zhu J, Chen G, Kayser MM (1996) A “designer yeast” that catalyzes the kinetic resolutions of 2-alkyl-substituted cyclohexanones by enantioselective Baeyer–Villiger oxidations. J Org Chem 61(22):7652–7653

    Article  PubMed  CAS  Google Scholar 

  55. Takeno S, Murata R, Kobayashi R, Mitsuhashi S, Ikeda M (2010) Engineering of Corynebacterium glutamicum with an NADPH-generating glycolytic pathway for l-lysine production. Appl Environ Microbiol 76(21):7154–7160. doi:10.1128/AEM.01464-10

    Article  PubMed  CAS  Google Scholar 

  56. Thouvenot B, Charpentier B, Branlant C (2004) The strong efficiency of the Escherichia coli gapA P1 promoter depends on a complex combination of functional determinants. Biochem J 383(Pt 2):371–382. doi:10.1042/BJ20040792

    PubMed  CAS  Google Scholar 

  57. Valverde F, Losada M, Serrano A (1999) Engineering a central metabolic pathway: glycolysis with no net phosphorylation in an Escherichia coli gap mutant complemented with a plant GapN gene. FEBS Lett 449(2–3):153–158. doi:10.1016/S0014-5793(99)00430-5

    Article  PubMed  CAS  Google Scholar 

  58. Verho R, Londesborough J, Penttila M, Richard P (2003) Engineering redox cofactor regeneration for improved pentose fermentation in Saccharomyces cerevisiae. Appl Environ Microbiol 69(10):5892–5897. doi:10.1128/AEM.69.10.5892-5897.2003

    Article  PubMed  CAS  Google Scholar 

  59. Verho R, Richard P, Jonson PH, Sundqvist L, Londesborough J, Penttila M (2002) Identification of the first fungal NADP-GAPDH from Kluyveromyces lactis. Biochemistry 41(46):13833–13838. doi:10.1021/bi0265325

    Article  PubMed  CAS  Google Scholar 

  60. Walton AZ, Stewart JD (2002) An efficient enzymatic Baeyer–Villiger oxidation by engineered Escherichia coli cells under non-growing conditions. Biotechnol Prog 18(2):262–268. doi:10.1021/bp010177c

    Article  PubMed  CAS  Google Scholar 

  61. Yoon KW, Doo EH, Kim SW, Park JB (2008) In situ recovery of lycopene during biosynthesis with recombinant Escherichia coli. J Biotechnol 135(3):291–294. doi:10.1016/j.jbiotec.2008.04.001

    Article  PubMed  CAS  Google Scholar 

  62. Zerez CR, Moul DE, Gomez EG, Lopez VM, Andreoli AJ (1987) Negative modulation of Escherichia coli NAD kinase by NADPH and NADH. J Bacteriol 169(1):184–188

    PubMed  CAS  Google Scholar 

  63. Zhang L, Tang Y, Guo ZP, Ding ZY, Shi GY (2011) Improving the ethanol yield by reducing glycerol formation using cofactor regulation in Saccharomyces cerevisiae. Biotechnol Lett 33(7):1375–1380. doi:10.1007/s10529-011-0588-6

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the National Science Foundation CBET0828516. Y. Wang was partially supported by a postdoctoral fellowship from the Howard Hughes Medical Institute, Beyond Traditional Borders program, and by a John S. Dunn Foundation Collaborative Research Award. The authors want to thank Prof. Kurata for providing plasmid pET101-D-topo-CAA43.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George N. Bennett.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Y., San, KY. & Bennett, G.N. Improvement of NADPH bioavailability in Escherichia coli by replacing NAD+-dependent glyceraldehyde-3-phosphate dehydrogenase GapA with NADP+-dependent GapB from Bacillus subtilis and addition of NAD kinase. J Ind Microbiol Biotechnol 40, 1449–1460 (2013). https://doi.org/10.1007/s10295-013-1335-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-013-1335-x

Keywords

Navigation